Search for blocks/addresses/...
Proofgold Address
address
PUUUwVELxPwsSupfDGmxg7hzeWbEBv5nkSy
total
0
mg
-
conjpub
-
current assets
91192..
/
e4ab7..
bday:
2814
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Definition
11e73..
:=
λ x0 x1 .
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
x1
)
Param
f482f..
:
ι
→
ι
→
ι
Known
6f2e8..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
4a7ef..
=
x0
Theorem
e7c20..
:
∀ x0 x1 x2 .
x0
=
11e73..
x1
x2
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f25e9..
:
∀ x0 x1 .
x0
=
f482f..
(
11e73..
x0
x1
)
4a7ef..
(proof)
Known
15d37..
:
∀ x0 x1 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
x1
)
)
(
4ae4a..
4a7ef..
)
=
x1
Theorem
1fa74..
:
∀ x0 x1 x2 .
x0
=
11e73..
x1
x2
⟶
x2
=
f482f..
x0
(
4ae4a..
4a7ef..
)
(proof)
Theorem
10197..
:
∀ x0 x1 .
x1
=
f482f..
(
11e73..
x0
x1
)
(
4ae4a..
4a7ef..
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
54ffc..
:
∀ x0 x1 x2 x3 .
11e73..
x0
x2
=
11e73..
x1
x3
⟶
and
(
x0
=
x1
)
(
x2
=
x3
)
(proof)
Definition
c40a6..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
prim1
x3
x2
⟶
x1
(
11e73..
x2
x3
)
)
⟶
x1
x0
Theorem
9e478..
:
∀ x0 x1 .
prim1
x1
x0
⟶
c40a6..
(
11e73..
x0
x1
)
(proof)
Theorem
f73e5..
:
∀ x0 x1 .
c40a6..
(
11e73..
x0
x1
)
⟶
prim1
x1
x0
(proof)
Theorem
d26db..
:
∀ x0 .
c40a6..
x0
⟶
x0
=
11e73..
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
(proof)
Definition
fcf68..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
Theorem
148e7..
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 .
fcf68..
(
11e73..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
3aee2..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
Theorem
42688..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
3aee2..
(
11e73..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
c0301..
:=
λ x0 .
λ x1 :
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
(
0fc90..
x0
x1
)
)
Theorem
2bd96..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
x0
=
c0301..
x1
x2
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
03207..
:
∀ x0 .
∀ x1 :
ι → ι
.
x0
=
f482f..
(
c0301..
x0
x1
)
4a7ef..
(proof)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
f9c17..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
x0
=
c0301..
x1
x2
⟶
∀ x3 .
prim1
x3
x1
⟶
x2
x3
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
6793f..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
=
f482f..
(
f482f..
(
c0301..
x0
x1
)
(
4ae4a..
4a7ef..
)
)
x2
(proof)
Theorem
1b8bb..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
c0301..
x0
x2
=
c0301..
x1
x3
⟶
and
(
x0
=
x1
)
(
∀ x4 .
prim1
x4
x0
⟶
x2
x4
=
x3
x4
)
(proof)
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
68a3f..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
c0301..
x0
x1
=
c0301..
x0
x2
(proof)
Definition
f4ccf..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
x1
(
c0301..
x2
x3
)
)
⟶
x1
x0
Theorem
70745..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
f4ccf..
(
c0301..
x0
x1
)
(proof)
Theorem
01ef5..
:
∀ x0 .
∀ x1 :
ι → ι
.
f4ccf..
(
c0301..
x0
x1
)
⟶
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
(proof)
Theorem
9903d..
:
∀ x0 .
f4ccf..
x0
⟶
x0
=
c0301..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
027cf..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
27e2e..
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
027cf..
(
c0301..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
4de1f..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
74d25..
:
∀ x0 :
ι →
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
4de1f..
(
c0301..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Param
eb53d..
:
ι
→
CT2
ι
Definition
987b2..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
(
eb53d..
x0
x1
)
)
Theorem
2ce64..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
x0
=
987b2..
x1
x2
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f26a7..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
x0
=
f482f..
(
987b2..
x0
x1
)
4a7ef..
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
ad438..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
x0
=
987b2..
x1
x2
⟶
∀ x3 .
prim1
x3
x1
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x3
x4
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Theorem
88494..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
x3
=
e3162..
(
f482f..
(
987b2..
x0
x1
)
(
4ae4a..
4a7ef..
)
)
x2
x3
(proof)
Theorem
31c9d..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
987b2..
x0
x2
=
987b2..
x1
x3
⟶
and
(
x0
=
x1
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
x3
x4
x5
)
(proof)
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Theorem
a90ae..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
987b2..
x0
x1
=
987b2..
x0
x2
(proof)
Definition
30750..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
x1
(
987b2..
x2
x3
)
)
⟶
x1
x0
Theorem
b6770..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
30750..
(
987b2..
x0
x1
)
(proof)
Theorem
4e11f..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
30750..
(
987b2..
x0
x1
)
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
(proof)
Theorem
6eef1..
:
∀ x0 .
30750..
x0
⟶
x0
=
987b2..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
19c2c..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
0ccad..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
19c2c..
(
987b2..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
93c99..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
7dd3b..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
93c99..
(
987b2..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
81bb1..
:=
λ x0 .
λ x1 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
(
1216a..
x0
x1
)
)
Theorem
6ca5c..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
x0
=
81bb1..
x1
x2
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
a4354..
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
f482f..
(
81bb1..
x0
x1
)
4a7ef..
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
d3d68..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
x0
=
81bb1..
x1
x2
⟶
∀ x3 .
prim1
x3
x1
⟶
x2
x3
=
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
73cce..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
=
decode_p
(
f482f..
(
81bb1..
x0
x1
)
(
4ae4a..
4a7ef..
)
)
x2
(proof)
Theorem
14896..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
81bb1..
x0
x2
=
81bb1..
x1
x3
⟶
and
(
x0
=
x1
)
(
∀ x4 .
prim1
x4
x0
⟶
x2
x4
=
x3
x4
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
6deec..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
81bb1..
x0
x1
=
81bb1..
x0
x2
(proof)
Definition
ec553..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
81bb1..
x2
x3
)
)
⟶
x1
x0
Theorem
0f4de..
:
∀ x0 .
∀ x1 :
ι → ο
.
ec553..
(
81bb1..
x0
x1
)
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
b0c07..
:
∀ x0 .
ec553..
x0
⟶
x0
=
81bb1..
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
013da..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
4b446..
:
∀ x0 :
ι →
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
013da..
(
81bb1..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
23a1a..
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_p
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
8f348..
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
23a1a..
(
81bb1..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
35983..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
(
d2155..
x0
x1
)
)
Theorem
d1955..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
x0
=
35983..
x1
x2
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
7c7b1..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
f482f..
(
35983..
x0
x1
)
4a7ef..
)
⟶
x2
(
f482f..
(
35983..
x0
x1
)
4a7ef..
)
x0
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
d8839..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
x0
=
35983..
x1
x2
⟶
∀ x3 .
prim1
x3
x1
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x3
x4
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Theorem
8e7c5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
x3
=
2b2e3..
(
f482f..
(
35983..
x0
x1
)
(
4ae4a..
4a7ef..
)
)
x2
x3
(proof)
Theorem
33e65..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
35983..
x0
x2
=
35983..
x1
x3
⟶
and
(
x0
=
x1
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
x3
x4
x5
)
(proof)
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
e7504..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
35983..
x0
x1
=
35983..
x0
x2
(proof)
Definition
36093..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
35983..
x2
x3
)
)
⟶
x1
x0
Theorem
19215..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
36093..
(
35983..
x0
x1
)
(proof)
Theorem
cf13a..
:
∀ x0 .
36093..
x0
⟶
x0
=
35983..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
56080..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
55955..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
56080..
(
35983..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
e0700..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
4f8ca..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
e0700..
(
35983..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Definition
35104..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
0fc90..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
λ x2 .
If_i
(
x2
=
4a7ef..
)
x0
(
e0e40..
x0
x1
)
)
Theorem
01155..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
x0
=
35104..
x1
x2
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f00b6..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
x0
=
f482f..
(
35104..
x0
x1
)
4a7ef..
(proof)
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
1efa9..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
x0
=
35104..
x1
x2
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x1
)
⟶
x2
x3
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
b2596..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
x1
x2
=
decode_c
(
f482f..
(
35104..
x0
x1
)
(
4ae4a..
4a7ef..
)
)
x2
(proof)
Theorem
d08e9..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
35104..
x0
x2
=
35104..
x1
x3
⟶
and
(
x0
=
x1
)
(
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
x2
x4
=
x3
x4
)
(proof)
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
fc6d0..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
35104..
x0
x1
=
35104..
x0
x2
(proof)
Definition
87ddc..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
x1
(
35104..
x2
x3
)
)
⟶
x1
x0
Theorem
8f88b..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
87ddc..
(
35104..
x0
x1
)
(proof)
Theorem
7efe5..
:
∀ x0 .
87ddc..
x0
⟶
x0
=
35104..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
5e74a..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
7210f..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
5e74a..
(
35104..
x1
x2
)
x0
=
x0
x1
x2
(proof)
Definition
a146d..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
Theorem
0b20d..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
(
ι → ο
)
→ ο
.
(
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
a146d..
(
35104..
x1
x2
)
x0
=
x0
x1
x2
(proof)
previous assets