Search for blocks/addresses/...

Proofgold Address

address
PUUX77iL56GePzFpQjLoGD2qymns1aENMTE
total
0
mg
-
conjpub
-
current assets
acfa8../98cae.. bday: 18893 doc published by Pr4zB..
Param ChurchNum_3ary_proj_p : (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο
Param ChurchNum_8ary_proj_p : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο
Param TwoRamseyGraph_4_5_24_ChurchNums_3x8 : (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ιιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Param apap : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Param lamSigma : ι(ιι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param andand : οοο
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Definition u18 := ordsucc u17
Definition u19 := ordsucc u18
Definition u20 := ordsucc u19
Definition u21 := ordsucc u20
Definition u22 := ordsucc u21
Definition u23 := ordsucc u22
Definition u24 := ordsucc u23
Param nat_pnat_p : ιο
Definition notnot := λ x0 : ο . x0False
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known 73189.. : nat_p u24
Param mul_natmul_nat : ιιι
Definition u25 := ordsucc u24
Known c12f7.. : mul_nat u5 u5 = u25
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known a57cb.. : ∀ x0 . nat_p x0∀ x1 . nat_p x1equip (mul_nat x0 x1) (setprod x0 x1)
Known nat_5nat_5 : nat_p 5
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Param If_iIf_i : οιιι
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known FalseEFalseE : False∀ x0 : ο . x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known cases_5cases_5 : ∀ x0 . x05∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 x0
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known In_4_5In_4_5 : 45
Known In_3_5In_3_5 : 35
Known In_2_5In_2_5 : 25
Known In_1_5In_1_5 : 15
Known In_0_5In_0_5 : 05
Theorem cd8d1.. : ∀ x0 x1 x2 x3 x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 x7 x8 x9 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p x2ChurchNum_3ary_proj_p x3ChurchNum_3ary_proj_p x4ChurchNum_8ary_proj_p x5ChurchNum_8ary_proj_p x6ChurchNum_8ary_proj_p x7ChurchNum_8ary_proj_p x8ChurchNum_8ary_proj_p x9(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x1 x6 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x11 x12 . x12)∀ x10 . (∀ x11 . x11u5∀ x12 . x12u5ap (ap x10 x11) x1224)(∀ x11 . x11u5∀ x12 . x12u5∀ x13 . x13u5ap (ap x10 x11) x12 = ap (ap x10 x11) x13x12 = x13)(∀ x11 . x11u5∀ x12 . x12u5(x11 = x12∀ x13 : ο . x13)∀ x13 . x13u5∀ x14 . x14u5ap (ap x10 x11) x13 = ap (ap x10 x12) x14∀ x15 : ο . x15)False (proof)
Param ChurchNums_3x8_to_u24 : (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ι
Param ChurchNums_8x3_to_3_lt7_id_ge7_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_1_2_3_4_5_6_7_0 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8x3_to_3_lt6_id_ge6_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_2_3_4_5_6_7_0_1 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8x3_to_3_lt5_id_ge5_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_3_4_5_6_7_0_1_2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8x3_to_3_lt4_id_ge4_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_4_5_6_7_0_1_2_3 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ordinalordinal : ιο
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known tuple_5_1_eqtuple_5_1_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 1 = x1
Known tuple_5_0_eqtuple_5_0_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 0 = x0
Known 1b4dc.. : ∀ x0 x1 x2 x3 x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 x7 x8 x9 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x5x1 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x5 x0x6 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x5ChurchNum_3ary_proj_p x2ChurchNum_3ary_proj_p x3ChurchNum_3ary_proj_p x4ChurchNum_8ary_proj_p x7ChurchNum_8ary_proj_p x8ChurchNum_8ary_proj_p x9(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x11 x12 . x12)False
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known tuple_5_2_eqtuple_5_2_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 2 = x2
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Known tuple_5_3_eqtuple_5_3_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 3 = x3
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known tuple_5_4_eqtuple_5_4_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 4 = x4
Known f60cd.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x2ChurchNum_8ary_proj_p x3TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x3 x0 x2
Known 16d18.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 x0 x1u24
Known 24233.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x0 x1)
Known dac10.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_8ary_proj_p (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x0)
Known 7b754.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x0 x1)
Known eaaf4.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_8ary_proj_p (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x0)
Known 2f553.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x0 x1)
Known c5de4.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_8ary_proj_p (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x0)
Known 1aa1c.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x0 x1)
Known 4ac5f.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_8ary_proj_p (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x0)
Theorem 99cbf.. : ∀ x0 x1 x2 x3 x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 x7 x8 x9 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p x2ChurchNum_3ary_proj_p x3ChurchNum_3ary_proj_p x4ChurchNum_8ary_proj_p x5ChurchNum_8ary_proj_p x6ChurchNum_8ary_proj_p x7ChurchNum_8ary_proj_p x8ChurchNum_8ary_proj_p x9(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x1 x6 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x11 x12 . x12)∀ x10 : (((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι)(((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . (∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) 0 = ChurchNums_3x8_to_u24 x11 x12)(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u1 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x12 x11) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u2 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x12 x11) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u3 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x12 x11) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u4 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x12 x11) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x11ChurchNum_8ary_proj_p x12∀ x13 . x13u5∀ x14 . x14u5ap (x10 x11 x12) x13 = ap (x10 x11 x12) x14x13 = x14)(∀ x11 x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x13 x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x11ChurchNum_8ary_proj_p x13ChurchNum_3ary_proj_p x12ChurchNum_8ary_proj_p x14(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x11 x13 x12 x14 = λ x16 x17 . x17)∀ x15 . x15u5∀ x16 . x16u5ap (x10 x11 x13) x15 = ap (x10 x12 x14) x16∀ x17 : ο . (x12 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x13 x11x14 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x13x17)(x11 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x14 x12x13 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x14x17)x17)False (proof)

previous assets