Search for blocks/addresses/...
Proofgold Address
address
PUUcHmwNNfokUde512jESW26stURhvzVA14
total
0
mg
-
conjpub
-
current assets
19c90..
/
b839c..
bday:
4892
doc published by
Pr6Pc..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
(proof)
Theorem
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
(proof)
Theorem
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
(proof)
Theorem
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
(proof)
Theorem
cases_5
cases_5
:
∀ x0 .
x0
∈
5
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
x0
(proof)
Theorem
cases_6
cases_6
:
∀ x0 .
x0
∈
6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
x0
(proof)
Theorem
cases_7
cases_7
:
∀ x0 .
x0
∈
7
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
x0
(proof)
Theorem
cases_8
cases_8
:
∀ x0 .
x0
∈
8
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
x0
(proof)
Theorem
cases_9
cases_9
:
∀ x0 .
x0
∈
9
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
8
⟶
x1
x0
(proof)
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Theorem
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Theorem
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
neq_2_1
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
nIn_2_1
nIn_2_1
:
nIn
2
1
(proof)
Theorem
neq_3_0
neq_3_0
:
3
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_3_1
neq_3_1
:
3
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_3_2
neq_3_2
:
3
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_4_0
neq_4_0
:
4
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_4_1
neq_4_1
:
4
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_4_2
neq_4_2
:
4
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_4_3
neq_4_3
:
4
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_5_0
neq_5_0
:
5
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_5_1
neq_5_1
:
5
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_5_2
neq_5_2
:
5
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_5_3
neq_5_3
:
5
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_5_4
neq_5_4
:
5
=
4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_6_0
neq_6_0
:
6
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_6_1
neq_6_1
:
6
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_6_2
neq_6_2
:
6
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_6_3
neq_6_3
:
6
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_6_4
neq_6_4
:
6
=
4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_6_5
neq_6_5
:
6
=
5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_0
neq_7_0
:
7
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_1
neq_7_1
:
7
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_2
neq_7_2
:
7
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_3
neq_7_3
:
7
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_4
neq_7_4
:
7
=
4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_5
neq_7_5
:
7
=
5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_7_6
neq_7_6
:
7
=
6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_0
neq_8_0
:
8
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_1
neq_8_1
:
8
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_2
neq_8_2
:
8
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_3
neq_8_3
:
8
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_4
neq_8_4
:
8
=
4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_5
neq_8_5
:
8
=
5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_6
neq_8_6
:
8
=
6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_8_7
neq_8_7
:
8
=
7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_0
neq_9_0
:
9
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_1
neq_9_1
:
9
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_2
neq_9_2
:
9
=
2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_3
neq_9_3
:
9
=
3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_4
neq_9_4
:
9
=
4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_5
neq_9_5
:
9
=
5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_6
neq_9_6
:
9
=
6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_7
neq_9_7
:
9
=
7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_9_8
neq_9_8
:
9
=
8
⟶
∀ x0 : ο .
x0
(proof)
previous assets