Search for blocks/addresses/...

Proofgold Address

address
PUUcHmwNNfokUde512jESW26stURhvzVA14
total
0
mg
-
conjpub
-
current assets
19c90../b839c.. bday: 4892 doc published by Pr6Pc..
Param ordsuccordsucc : ιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Theorem cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0 (proof)
Theorem cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0 (proof)
Theorem cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0 (proof)
Theorem cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0 (proof)
Theorem cases_5cases_5 : ∀ x0 . x05∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 x0 (proof)
Theorem cases_6cases_6 : ∀ x0 . x06∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 x0 (proof)
Theorem cases_7cases_7 : ∀ x0 . x07∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 x0 (proof)
Theorem cases_8cases_8 : ∀ x0 . x08∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 x0 (proof)
Theorem cases_9cases_9 : ∀ x0 . x09∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 8x1 x0 (proof)
Known neq_ordsucc_0neq_ordsucc_0 : ∀ x0 . ordsucc x0 = 0∀ x1 : ο . x1
Theorem neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0 (proof)
Theorem neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0 (proof)
Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1
Theorem ordsucc_inj_contraordsucc_inj_contra : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)ordsucc x0 = ordsucc x1∀ x2 : ο . x2 (proof)
Theorem neq_2_1neq_2_1 : 2 = 1∀ x0 : ο . x0 (proof)
Theorem nIn_2_1nIn_2_1 : nIn 2 1 (proof)
Theorem neq_3_0neq_3_0 : 3 = 0∀ x0 : ο . x0 (proof)
Theorem neq_3_1neq_3_1 : 3 = 1∀ x0 : ο . x0 (proof)
Theorem neq_3_2neq_3_2 : 3 = 2∀ x0 : ο . x0 (proof)
Theorem neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0 (proof)
Theorem neq_4_1neq_4_1 : 4 = 1∀ x0 : ο . x0 (proof)
Theorem neq_4_2neq_4_2 : 4 = 2∀ x0 : ο . x0 (proof)
Theorem neq_4_3neq_4_3 : 4 = 3∀ x0 : ο . x0 (proof)
Theorem neq_5_0neq_5_0 : 5 = 0∀ x0 : ο . x0 (proof)
Theorem neq_5_1neq_5_1 : 5 = 1∀ x0 : ο . x0 (proof)
Theorem neq_5_2neq_5_2 : 5 = 2∀ x0 : ο . x0 (proof)
Theorem neq_5_3neq_5_3 : 5 = 3∀ x0 : ο . x0 (proof)
Theorem neq_5_4neq_5_4 : 5 = 4∀ x0 : ο . x0 (proof)
Theorem neq_6_0neq_6_0 : 6 = 0∀ x0 : ο . x0 (proof)
Theorem neq_6_1neq_6_1 : 6 = 1∀ x0 : ο . x0 (proof)
Theorem neq_6_2neq_6_2 : 6 = 2∀ x0 : ο . x0 (proof)
Theorem neq_6_3neq_6_3 : 6 = 3∀ x0 : ο . x0 (proof)
Theorem neq_6_4neq_6_4 : 6 = 4∀ x0 : ο . x0 (proof)
Theorem neq_6_5neq_6_5 : 6 = 5∀ x0 : ο . x0 (proof)
Theorem neq_7_0neq_7_0 : 7 = 0∀ x0 : ο . x0 (proof)
Theorem neq_7_1neq_7_1 : 7 = 1∀ x0 : ο . x0 (proof)
Theorem neq_7_2neq_7_2 : 7 = 2∀ x0 : ο . x0 (proof)
Theorem neq_7_3neq_7_3 : 7 = 3∀ x0 : ο . x0 (proof)
Theorem neq_7_4neq_7_4 : 7 = 4∀ x0 : ο . x0 (proof)
Theorem neq_7_5neq_7_5 : 7 = 5∀ x0 : ο . x0 (proof)
Theorem neq_7_6neq_7_6 : 7 = 6∀ x0 : ο . x0 (proof)
Theorem neq_8_0neq_8_0 : 8 = 0∀ x0 : ο . x0 (proof)
Theorem neq_8_1neq_8_1 : 8 = 1∀ x0 : ο . x0 (proof)
Theorem neq_8_2neq_8_2 : 8 = 2∀ x0 : ο . x0 (proof)
Theorem neq_8_3neq_8_3 : 8 = 3∀ x0 : ο . x0 (proof)
Theorem neq_8_4neq_8_4 : 8 = 4∀ x0 : ο . x0 (proof)
Theorem neq_8_5neq_8_5 : 8 = 5∀ x0 : ο . x0 (proof)
Theorem neq_8_6neq_8_6 : 8 = 6∀ x0 : ο . x0 (proof)
Theorem neq_8_7neq_8_7 : 8 = 7∀ x0 : ο . x0 (proof)
Theorem neq_9_0neq_9_0 : 9 = 0∀ x0 : ο . x0 (proof)
Theorem neq_9_1neq_9_1 : 9 = 1∀ x0 : ο . x0 (proof)
Theorem neq_9_2neq_9_2 : 9 = 2∀ x0 : ο . x0 (proof)
Theorem neq_9_3neq_9_3 : 9 = 3∀ x0 : ο . x0 (proof)
Theorem neq_9_4neq_9_4 : 9 = 4∀ x0 : ο . x0 (proof)
Theorem neq_9_5neq_9_5 : 9 = 5∀ x0 : ο . x0 (proof)
Theorem neq_9_6neq_9_6 : 9 = 6∀ x0 : ο . x0 (proof)
Theorem neq_9_7neq_9_7 : 9 = 7∀ x0 : ο . x0 (proof)
Theorem neq_9_8neq_9_8 : 9 = 8∀ x0 : ο . x0 (proof)

previous assets