Search for blocks/addresses/...
Proofgold Address
address
PUUdk3KAbWaBTLH6mj39vTZXmiwb7oZ1f8p
total
0
mg
-
conjpub
-
current assets
87f2a..
/
c5e39..
bday:
2719
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∃ x4 .
and
(
prim1
x4
x0
)
(
x2
x4
=
x3
)
)
Definition
91630..
:=
λ x0 .
prim2
x0
x0
Known
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Theorem
b9ebd..
:
∀ x0 .
91630..
x0
=
prim2
x0
x0
...
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
9ffeb..
:
∀ x0 x1 .
91630..
x0
=
x1
⟶
and
(
prim1
x0
x1
)
(
∀ x2 .
prim1
x2
x1
⟶
x2
=
x0
)
...
Definition
7ee77..
:=
λ x0 x1 .
prim2
(
prim2
x0
x1
)
(
91630..
x0
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
2532b..
:
∀ x0 x1 x2 .
prim1
x0
(
prim2
x1
x2
)
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
67787..
:
∀ x0 x1 .
prim1
x0
(
prim2
x0
x1
)
Known
5a932..
:
∀ x0 x1 .
prim1
x1
(
prim2
x0
x1
)
Theorem
6c815..
:
∀ x0 x1 x2 x3 .
7ee77..
x0
x1
=
7ee77..
x2
x3
⟶
x0
=
x2
...
Theorem
9480e..
:
∀ x0 x1 x2 x3 .
7ee77..
x0
x1
=
7ee77..
x2
x3
⟶
x1
=
x3
...
Theorem
76a5f..
:
∀ x0 x1 x2 x3 .
7ee77..
x0
x1
=
7ee77..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
...
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
c2e41..
:=
λ x0 x1 .
∃ x2 .
and
(
and
(
∀ x4 .
prim1
x4
x0
⟶
∃ x5 .
and
(
prim1
x5
x1
)
(
prim1
(
7ee77..
x4
x5
)
x2
)
)
(
∀ x4 .
prim1
x4
x1
⟶
∃ x5 .
and
(
prim1
x5
x0
)
(
prim1
(
7ee77..
x5
x4
)
x2
)
)
)
(
∀ x4 x5 x6 x7 .
prim1
(
7ee77..
x4
x5
)
x2
⟶
prim1
(
7ee77..
x6
x7
)
x2
⟶
iff
(
x4
=
x6
)
(
x5
=
x7
)
)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
c6ad4..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
c2e41..
x0
x1
...
Known
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Theorem
64d57..
:
∀ x0 x1 .
c2e41..
x0
x1
⟶
∃ x2 :
ι → ι
.
bij
x0
x1
x2
...
Known
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
...
Known
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
Theorem
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
...
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
or4I1
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Theorem
or5I1
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
...
Known
or4I2
:
∀ x0 x1 x2 x3 : ο .
x1
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Theorem
or5I2
:
∀ x0 x1 x2 x3 x4 : ο .
x1
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
...
Known
or4I3
:
∀ x0 x1 x2 x3 : ο .
x2
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Theorem
or5I3
:
∀ x0 x1 x2 x3 x4 : ο .
x2
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
...
Known
or4I4
:
∀ x0 x1 x2 x3 : ο .
x3
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
Theorem
or5I4
:
∀ x0 x1 x2 x3 x4 : ο .
x3
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
...
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
or5I5
:
∀ x0 x1 x2 x3 x4 : ο .
x4
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
...
Known
or4E
:
∀ x0 x1 x2 x3 : ο .
or
(
or
(
or
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x4
)
⟶
(
x1
⟶
x4
)
⟶
(
x2
⟶
x4
)
⟶
(
x3
⟶
x4
)
⟶
x4
Theorem
or5E
:
∀ x0 x1 x2 x3 x4 : ο .
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x5
)
⟶
(
x1
⟶
x5
)
⟶
(
x2
⟶
x5
)
⟶
(
x3
⟶
x5
)
⟶
(
x4
⟶
x5
)
⟶
x5
...
Theorem
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
...
Theorem
and6E
:
∀ x0 x1 x2 x3 x4 x5 : ο .
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
⟶
∀ x6 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
)
⟶
x6
...
Theorem
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
...
Theorem
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
...
previous assets