Search for blocks/addresses/...
Proofgold Address
address
PUUqbjESRAKHZjMpfAd1sB9aEHc7yzF3f1H
total
0
mg
-
conjpub
-
current assets
53e42..
/
b8235..
bday:
3760
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
explicit_Nats
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
and
(
and
(
prim1
x1
x0
)
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
)
(
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
prim1
x4
x0
⟶
x3
x4
)
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
explicit_Nats_I
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
prim1
x1
x0
⟶
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
prim1
x4
x0
⟶
x3
x4
)
⟶
explicit_Nats
x0
x1
x2
(proof)
Known
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
Theorem
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
prim1
x1
x0
⟶
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x4
)
x0
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_Nats_ind
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
prim1
x4
x0
⟶
x3
x4
(proof)
Param
48ef8..
:
ι
Param
4a7ef..
:
ι
Param
4ae4a..
:
ι
→
ι
Known
8ee89..
:
prim1
4a7ef..
48ef8..
Known
98ac3..
:
∀ x0 .
prim1
x0
48ef8..
⟶
prim1
(
4ae4a..
x0
)
48ef8..
Known
1b1d1..
:
∀ x0 .
4ae4a..
x0
=
4a7ef..
⟶
∀ x1 : ο .
x1
Known
054cd..
:
∀ x0 x1 .
4ae4a..
x0
=
4ae4a..
x1
⟶
x0
=
x1
Definition
ba9d8..
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
4ae4a..
x2
)
)
⟶
x1
x0
Known
c2711..
:
∀ x0 .
prim1
x0
48ef8..
⟶
ba9d8..
x0
Theorem
dd179..
:
explicit_Nats
48ef8..
4a7ef..
4ae4a..
(proof)
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Theorem
explicit_Nats_transfer
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 x4 .
∀ x5 x6 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
bij
x0
x3
x6
⟶
x6
x1
=
x4
⟶
(
∀ x7 .
prim1
x7
x0
⟶
x6
(
x2
x7
)
=
x5
(
x6
x7
)
)
⟶
explicit_Nats
x3
x4
x5
(proof)
Definition
explicit_Field
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
prim1
x1
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
)
(
prim1
x2
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
prim1
x5
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
Known
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
explicit_Field_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
prim1
x1
x0
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x4
x5
x6
)
x0
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
(
x5
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
prim1
x7
x0
)
(
x4
x5
x7
=
x2
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_Field
x0
x1
x2
x3
x4
(proof)
Known
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
Theorem
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
(proof)
Definition
explicit_Field_minus
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
prim0
(
λ x6 .
and
(
prim1
x6
x0
)
(
x3
x5
x6
=
x1
)
)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
explicit_Field_minus_prop
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
and
(
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x0
)
(
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
)
(proof)
Theorem
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x0
(proof)
Theorem
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_Field_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_Field_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_Field_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_Field_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x0
(proof)
Theorem
explicit_Field_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_Field_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
=
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x5
(proof)
Theorem
explicit_Field_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
(proof)
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
explicit_OrderedField
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
and
(
and
(
and
(
and
(
and
(
explicit_Field
x0
x1
x2
x3
x4
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
Known
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
explicit_OrderedField_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x6
x7
⟶
x5
x7
x8
⟶
x5
x6
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
iff
(
and
(
x5
x6
x7
)
(
x5
x7
x6
)
)
(
x6
=
x7
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
or
(
x5
x6
x7
)
(
x5
x7
x6
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x6
x7
⟶
x5
(
x3
x6
x8
)
(
x3
x7
x8
)
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x5
x1
(
x4
x6
x7
)
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
(proof)
Known
and6E
:
∀ x0 x1 x2 x3 x4 x5 : ο .
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
⟶
∀ x6 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
)
⟶
x6
Theorem
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
(proof)
Definition
lt
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 x7 .
and
(
x5
x6
x7
)
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
Definition
natOfOrderedField_p
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 .
∀ x7 :
ι → ο
.
x7
x1
⟶
(
∀ x8 .
x7
x8
⟶
x7
(
x3
x8
x2
)
)
⟶
x7
x6
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
492ff..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
∀ x3 : ο .
(
prim1
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Theorem
801aa..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Nats
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
x1
(
λ x6 .
x3
x6
x2
)
(proof)
Param
3097a..
:
ι
→
(
ι
→
ι
) →
ι
Definition
b5c9f..
:=
λ x0 x1 .
3097a..
x1
(
λ x2 .
x0
)
Param
f482f..
:
ι
→
ι
→
ι
Definition
62ee1..
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
and
(
and
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
)
(
∀ x6 .
prim1
x6
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
∀ x7 .
prim1
x7
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
and
(
x5
(
f482f..
x6
x8
)
(
f482f..
x7
x8
)
)
(
x5
(
f482f..
x6
x8
)
(
f482f..
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
f482f..
x7
(
x3
x8
x2
)
)
(
f482f..
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 .
prim1
x10
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
x5
(
f482f..
x6
x10
)
x9
)
(
x5
x9
(
f482f..
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
1f659..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
(
x5
x7
(
x4
x9
x6
)
)
⟶
x8
)
⟶
x8
)
⟶
(
∀ x6 .
prim1
x6
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
∀ x7 .
prim1
x7
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
and
(
x5
(
f482f..
x6
x8
)
(
f482f..
x7
x8
)
)
(
x5
(
f482f..
x6
x8
)
(
f482f..
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
f482f..
x7
(
x3
x8
x2
)
)
(
f482f..
x7
x8
)
)
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
prim1
x9
x0
)
(
∀ x10 .
prim1
x10
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
x5
(
f482f..
x6
x10
)
x9
)
(
x5
x9
(
f482f..
x7
x10
)
)
)
⟶
x8
)
⟶
x8
)
⟶
62ee1..
x0
x1
x2
x3
x4
x5
(proof)
Known
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
f2fa8..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
62ee1..
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
prim1
x10
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
prim1
x7
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
∀ x8 .
prim1
x8
(
b5c9f..
x0
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
)
⟶
(
∀ x9 .
prim1
x9
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
and
(
x5
(
f482f..
x7
x9
)
(
f482f..
x8
x9
)
)
(
x5
(
f482f..
x7
x9
)
(
f482f..
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
f482f..
x8
(
x3
x9
x2
)
)
(
f482f..
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
prim1
x10
x0
)
(
∀ x11 .
prim1
x11
(
1216a..
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
and
(
x5
(
f482f..
x7
x11
)
x10
)
(
x5
x10
(
f482f..
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
62ee1..
x0
x1
x2
x3
x4
x5
⟶
x6
(proof)
Theorem
explicit_Field_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 .
∀ x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
bij
x0
x5
x10
⟶
x10
x1
=
x6
⟶
x10
x2
=
x7
⟶
(
∀ x11 .
prim1
x11
x0
⟶
∀ x12 .
prim1
x12
x0
⟶
x10
(
x3
x11
x12
)
=
x8
(
x10
x11
)
(
x10
x12
)
)
⟶
(
∀ x11 .
prim1
x11
x0
⟶
∀ x12 .
prim1
x12
x0
⟶
x10
(
x4
x11
x12
)
=
x9
(
x10
x11
)
(
x10
x12
)
)
⟶
explicit_Field
x5
x6
x7
x8
x9
(proof)
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
explicit_OrderedField_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_OrderedField
x6
x7
x8
x9
x10
x11
(proof)
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Known
d0a1f..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
prim1
x2
x0
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Known
d8d74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
(
3097a..
x0
x1
)
⟶
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
Known
27474..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
(
x1
x3
)
)
⟶
prim1
(
0fc90..
x0
x2
)
(
3097a..
x0
x1
)
Theorem
5ece9..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
62ee1..
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
prim1
x13
x0
⟶
∀ x14 .
prim1
x14
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
62ee1..
x6
x7
x8
x9
x10
x11
(proof)
Definition
11fac..
:=
λ x0 .
λ x1 x2 :
ι → ι
.
λ x3 x4 x5 .
λ x6 x7 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
explicit_Field
x0
x3
x4
x6
x7
)
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
62ee1..
(
1216a..
x0
(
λ x10 .
x1
x10
=
x10
)
)
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
)
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x2
x8
)
(
1216a..
x0
(
λ x9 .
x1
x9
=
x9
)
)
)
)
(
prim1
x5
x0
)
)
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x1
x8
)
x0
)
)
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x2
x8
)
x0
)
)
(
∀ x8 .
prim1
x8
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
)
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
)
(
x6
(
x7
x5
x5
)
x4
=
x3
)
Theorem
be4f2..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 x5 .
∀ x6 x7 :
ι →
ι → ι
.
explicit_Field
x0
x3
x4
x6
x7
⟶
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
62ee1..
(
1216a..
x0
(
λ x10 .
x1
x10
=
x10
)
)
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x2
x8
)
(
1216a..
x0
(
λ x9 .
x1
x9
=
x9
)
)
)
⟶
prim1
x5
x0
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x1
x8
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
prim1
(
x2
x8
)
x0
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
⟶
x6
(
x7
x5
x5
)
x4
=
x3
⟶
11fac..
x0
x1
x2
x3
x4
x5
x6
x7
(proof)
previous assets