Search for blocks/addresses/...

Proofgold Address

address
PUUwp9yzXCPU27r1TEpD6AAE9UXp3ueCqsd
total
0
mg
-
conjpub
-
current assets
79729../cb4ae.. bday: 4910 doc published by Pr6Pc..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Param SingSing : ιι
Param ordsuccordsucc : ιι
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Known In_0_1In_0_1 : 01
Theorem not_TransSet_Sing1not_TransSet_Sing1 : not (TransSet (Sing 1)) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition ordinalordinal := λ x0 . and (TransSet x0) (∀ x1 . x1x0TransSet x1)
Theorem not_ordinal_Sing1not_ordinal_Sing1 : not (ordinal (Sing 1)) (proof)
Param binunionbinunion : ιιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Theorem tagged_not_ordinaltagged_not_ordinal : ∀ x0 . not (ordinal (SetAdjoin x0 (Sing 1))) (proof)
Definition nInnIn := λ x0 x1 . not (x0x1)
Theorem tagged_notin_ordinaltagged_notin_ordinal : ∀ x0 x1 . ordinal x0nIn (SetAdjoin x1 (Sing 1)) x0 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known FalseEFalseE : False∀ x0 : ο . x0
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Theorem tagged_eqE_Subqtagged_eqE_Subq : ∀ x0 x1 . ordinal x0SetAdjoin x0 (Sing 1) = SetAdjoin x1 (Sing 1)x0x1 (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Theorem tagged_eqE_eqtagged_eqE_eq : ∀ x0 x1 . ordinal x0ordinal x1SetAdjoin x0 (Sing 1) = SetAdjoin x1 (Sing 1)x0 = x1 (proof)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem tagged_ReplEtagged_ReplE : ∀ x0 x1 . ordinal x0ordinal x1SetAdjoin x1 (Sing 1){SetAdjoin x2 (Sing 1)|x2 ∈ x0}x1x0 (proof)
Theorem ordinal_notin_tagged_Replordinal_notin_tagged_Repl : ∀ x0 x1 . ordinal x0nIn x0 {SetAdjoin x2 (Sing 1)|x2 ∈ x1} (proof)
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem SNoElts_monSNoElts_mon : ∀ x0 x1 . x0x1SNoElts_ x0SNoElts_ x1 (proof)
Param exactly1of2exactly1of2 : οοο
Definition SNo_SNo_ := λ x0 x1 . and (x1SNoElts_ x0) (∀ x2 . x2x0exactly1of2 (SetAdjoin x2 (Sing 1)x1) (x2x1))
Param SepSep : ι(ιο) → ι
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Definition PSNoPSNo := λ x0 . λ x1 : ι → ο . binunion (Sep x0 x1) {SetAdjoin x2 (Sing 1)|x2 ∈ x0,not (x1 x2)}
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Definition PNoEq_PNoEq_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 . x3x0iff (x1 x3) (x2 x3)
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Theorem PNoEq_PSNoPNoEq_PSNo : ∀ x0 . ordinal x0∀ x1 : ι → ο . PNoEq_ x0 (λ x2 . x2PSNo x0 x1) x1 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known exactly1of2_I2exactly1of2_I2 : ∀ x0 x1 : ο . not x0x1exactly1of2 x0 x1
Known exactly1of2_I1exactly1of2_I1 : ∀ x0 x1 : ο . x0not x1exactly1of2 x0 x1
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Theorem SNo_PSNoSNo_PSNo : ∀ x0 . ordinal x0∀ x1 : ι → ο . SNo_ x0 (PSNo x0 x1) (proof)
Known exactly1of2_Eexactly1of2_E : ∀ x0 x1 : ο . exactly1of2 x0 x1∀ x2 : ο . (x0not x1x2)(not x0x1x2)x2
Theorem SNo_PSNo_eta_SNo_PSNo_eta_ : ∀ x0 x1 . ordinal x0SNo_ x0 x1x1 = PSNo x0 (λ x3 . x3x1) (proof)
Definition SNoSNo := λ x0 . ∀ x1 : ο . (∀ x2 . and (ordinal x2) (SNo_ x2 x0)x1)x1
Theorem SNo_SNoSNo_SNo : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNo x1 (proof)
Definition SNoLevSNoLev := λ x0 . prim0 (λ x1 . and (ordinal x1) (SNo_ x1 x0))
Known exactly1of2_orexactly1of2_or : ∀ x0 x1 : ο . exactly1of2 x0 x1or x0 x1
Theorem SNoLev_uniq_SubqSNoLev_uniq_Subq : ∀ x0 x1 x2 . ordinal x1ordinal x2SNo_ x1 x0SNo_ x2 x0x1x2 (proof)
Theorem SNoLev_uniqSNoLev_uniq : ∀ x0 x1 x2 . ordinal x1ordinal x2SNo_ x1 x0SNo_ x2 x0x1 = x2 (proof)
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem SNoLev_propSNoLev_prop : ∀ x0 . SNo x0and (ordinal (SNoLev x0)) (SNo_ (SNoLev x0) x0) (proof)
Theorem SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0) (proof)
Theorem SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0 (proof)
Theorem SNo_PSNo_etaSNo_PSNo_eta : ∀ x0 . SNo x0x0 = PSNo (SNoLev x0) (λ x2 . x2x0) (proof)
Theorem SNoLev_PSNoSNoLev_PSNo : ∀ x0 . ordinal x0∀ x1 : ι → ο . SNoLev (PSNo x0 x1) = x0 (proof)
Theorem SNo_SubqSNo_Subq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1(∀ x2 . x2SNoLev x0iff (x2x0) (x2x1))x0x1 (proof)
Definition SNoEq_SNoEq_ := λ x0 x1 x2 . PNoEq_ x0 (λ x3 . x3x1) (λ x3 . x3x2)
Theorem SNoEq_ISNoEq_I : ∀ x0 x1 x2 . (∀ x3 . x3x0iff (x3x1) (x3x2))SNoEq_ x0 x1 x2 (proof)
Theorem SNoEq_ESNoEq_E : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2∀ x3 . x3x0iff (x3x1) (x3x2) (proof)
Theorem SNoEq_E1SNoEq_E1 : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2∀ x3 . x3x0x3x1x3x2 (proof)
Theorem SNoEq_E2SNoEq_E2 : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2∀ x3 . x3x0x3x2x3x1 (proof)
Known PNoEq_antimon_PNoEq_antimon_ : ∀ x0 x1 : ι → ο . ∀ x2 . ordinal x2∀ x3 . x3x2PNoEq_ x2 x0 x1PNoEq_ x3 x0 x1
Theorem SNoEq_antimon_SNoEq_antimon_ : ∀ x0 . ordinal x0∀ x1 . x1x0∀ x2 x3 . SNoEq_ x0 x2 x3SNoEq_ x1 x2 x3 (proof)
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known iff_symiff_sym : ∀ x0 x1 : ο . iff x0 x1iff x1 x0
Theorem SNo_eqSNo_eq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0 = SNoLev x1SNoEq_ (SNoLev x0) x0 x1x0 = x1 (proof)
Param PNoLtPNoLt : ι(ιο) → ι(ιο) → ο
Definition SNoLtSNoLt := λ x0 x1 . PNoLt (SNoLev x0) (λ x2 . x2x0) (SNoLev x1) (λ x2 . x2x1)
Definition PNoLePNoLe := λ x0 . λ x1 : ι → ο . λ x2 . λ x3 : ι → ο . or (PNoLt x0 x1 x2 x3) (and (x0 = x2) (PNoEq_ x0 x1 x3))
Definition SNoLeSNoLe := λ x0 x1 . PNoLe (SNoLev x0) (λ x2 . x2x0) (SNoLev x1) (λ x2 . x2x1)
Known PNoLeI1PNoLeI1 : ∀ x0 x1 . ∀ x2 x3 : ι → ο . PNoLt x0 x2 x1 x3PNoLe x0 x2 x1 x3
Theorem SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1 (proof)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1) (proof)
Known PNoEq_ref_PNoEq_ref_ : ∀ x0 . ∀ x1 : ι → ο . PNoEq_ x0 x1 x1
Theorem SNoEq_ref_SNoEq_ref_ : ∀ x0 x1 . SNoEq_ x0 x1 x1 (proof)
Known PNoEq_sym_PNoEq_sym_ : ∀ x0 . ∀ x1 x2 : ι → ο . PNoEq_ x0 x1 x2PNoEq_ x0 x2 x1
Theorem SNoEq_sym_SNoEq_sym_ : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x1 (proof)
Known PNoEq_tra_PNoEq_tra_ : ∀ x0 . ∀ x1 x2 x3 : ι → ο . PNoEq_ x0 x1 x2PNoEq_ x0 x2 x3PNoEq_ x0 x1 x3
Theorem SNoEq_tra_SNoEq_tra_ : ∀ x0 x1 x2 x3 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x3SNoEq_ x0 x1 x3 (proof)
Param binintersectbinintersect : ιιι
Definition PNoLt_PNoLt_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x0) (and (and (PNoEq_ x4 x1 x2) (not (x1 x4))) (x2 x4))x3)x3
Known PNoLtEPNoLtE : ∀ x0 x1 . ∀ x2 x3 : ι → ο . PNoLt x0 x2 x1 x3∀ x4 : ο . (PNoLt_ (binintersect x0 x1) x2 x3x4)(x0x1PNoEq_ x0 x2 x3x3 x0x4)(x1x0PNoEq_ x1 x2 x3not (x2 x1)x4)x4
Known PNoLt_E_PNoLt_E_ : ∀ x0 . ∀ x1 x2 : ι → ο . PNoLt_ x0 x1 x2∀ x3 : ο . (∀ x4 . x4x0PNoEq_ x4 x1 x2not (x1 x4)x2 x4x3)x3
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known PNoLtI3PNoLtI3 : ∀ x0 x1 . ∀ x2 x3 : ι → ο . x1x0PNoEq_ x1 x2 x3not (x2 x1)PNoLt x0 x2 x1 x3
Known PNoLtI2PNoLtI2 : ∀ x0 x1 . ∀ x2 x3 : ι → ο . x0x1PNoEq_ x0 x2 x3x3 x0PNoLt x0 x2 x1 x3
Theorem SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2 (proof)
Theorem SNoLtI2SNoLtI2 : ∀ x0 x1 . SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1SNoLt x0 x1 (proof)
Theorem SNoLtI3SNoLtI3 : ∀ x0 x1 . SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0SNoLt x0 x1 (proof)
Known PNoLt_irrefPNoLt_irref : ∀ x0 . ∀ x1 : ι → ο . not (PNoLt x0 x1 x0 x1)
Theorem SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0) (proof)
Known PNoLt_trichotomy_orPNoLt_trichotomy_or : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ordinal x0ordinal x1or (or (PNoLt x0 x2 x1 x3) (and (x0 = x1) (PNoEq_ x0 x2 x3))) (PNoLt x1 x3 x0 x2)
Known or3I1or3I1 : ∀ x0 x1 x2 : ο . x0or (or x0 x1) x2
Known or3I2or3I2 : ∀ x0 x1 x2 : ο . x1or (or x0 x1) x2
Known or3I3or3I3 : ∀ x0 x1 x2 : ο . x2or (or x0 x1) x2
Theorem SNoLt_trichotomy_orSNoLt_trichotomy_or : ∀ x0 x1 . SNo x0SNo x1or (or (SNoLt x0 x1) (x0 = x1)) (SNoLt x1 x0) (proof)
Known PNoLt_traPNoLt_tra : ∀ x0 x1 x2 . ordinal x0ordinal x1ordinal x2∀ x3 x4 x5 : ι → ο . PNoLt x0 x3 x1 x4PNoLt x1 x4 x2 x5PNoLt x0 x3 x2 x5
Theorem SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2 (proof)
Known PNoLe_refPNoLe_ref : ∀ x0 . ∀ x1 : ι → ο . PNoLe x0 x1 x0 x1
Theorem SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0 (proof)
Known PNoLe_antisymPNoLe_antisym : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 x3 : ι → ο . PNoLe x0 x2 x1 x3PNoLe x1 x3 x0 x2and (x0 = x1) (PNoEq_ x0 x2 x3)
Theorem SNoLe_antisymSNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1 (proof)
Known PNoLtLe_traPNoLtLe_tra : ∀ x0 x1 x2 . ordinal x0ordinal x1ordinal x2∀ x3 x4 x5 : ι → ο . PNoLt x0 x3 x1 x4PNoLe x1 x4 x2 x5PNoLt x0 x3 x2 x5
Theorem SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2 (proof)
Known PNoLeLt_traPNoLeLt_tra : ∀ x0 x1 x2 . ordinal x0ordinal x1ordinal x2∀ x3 x4 x5 : ι → ο . PNoLe x0 x3 x1 x4PNoLt x1 x4 x2 x5PNoLt x0 x3 x2 x5
Theorem SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2 (proof)
Known PNoLe_traPNoLe_tra : ∀ x0 x1 x2 . ordinal x0ordinal x1ordinal x2∀ x3 x4 x5 : ι → ο . PNoLe x0 x3 x1 x4PNoLe x1 x4 x2 x5PNoLe x0 x3 x2 x5
Theorem SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2 (proof)
Theorem SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0) (proof)
Known PNoEqLt_traPNoEqLt_tra : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 x3 x4 : ι → ο . PNoEq_ x0 x2 x3PNoLt x0 x3 x1 x4PNoLt x0 x2 x1 x4
Known PNoLtEq_traPNoLtEq_tra : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 x3 x4 : ι → ο . PNoLt x0 x2 x1 x3PNoEq_ x1 x3 x4PNoLt x0 x2 x1 x4
Theorem SNoLt_PSNo_PNoLtSNoLt_PSNo_PNoLt : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ordinal x0ordinal x1SNoLt (PSNo x0 x2) (PSNo x1 x3)PNoLt x0 x2 x1 x3 (proof)
Theorem PNoLt_SNoLt_PSNoPNoLt_SNoLt_PSNo : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ordinal x0ordinal x1PNoLt x0 x2 x1 x3SNoLt (PSNo x0 x2) (PSNo x1 x3) (proof)
Param PNo_bdPNo_bd : (ι(ιο) → ο) → (ι(ιο) → ο) → ι
Param PNo_predPNo_pred : (ι(ιο) → ο) → (ι(ιο) → ο) → ιο
Definition SNoCutSNoCut := λ x0 x1 . PSNo (PNo_bd (λ x2 . λ x3 : ι → ο . and (ordinal x2) (PSNo x2 x3x0)) (λ x2 . λ x3 : ι → ο . and (ordinal x2) (PSNo x2 x3x1))) (PNo_pred (λ x2 . λ x3 : ι → ο . and (ordinal x2) (PSNo x2 x3x0)) (λ x2 . λ x3 : ι → ο . and (ordinal x2) (PSNo x2 x3x1)))
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param famunionfamunion : ι(ιι) → ι
Definition PNoLt_pwisePNoLt_pwise := λ x0 x1 : ι → (ι → ο) → ο . ∀ x2 . ordinal x2∀ x3 : ι → ο . x0 x2 x3∀ x4 . ordinal x4∀ x5 : ι → ο . x1 x4 x5PNoLt x2 x3 x4 x5
Definition PNo_lenbddPNo_lenbdd := λ x0 . λ x1 : ι → (ι → ο) → ο . ∀ x2 . ∀ x3 : ι → ο . x1 x2 x3x2x0
Definition PNo_strict_upperbdPNo_strict_upperbd := λ x0 : ι → (ι → ο) → ο . λ x1 . λ x2 : ι → ο . ∀ x3 . ordinal x3∀ x4 : ι → ο . x0 x3 x4PNoLt x3 x4 x1 x2
Definition PNo_strict_lowerbdPNo_strict_lowerbd := λ x0 : ι → (ι → ο) → ο . λ x1 . λ x2 : ι → ο . ∀ x3 . ordinal x3∀ x4 : ι → ο . x0 x3 x4PNoLt x1 x2 x3 x4
Definition PNo_strict_imvPNo_strict_imv := λ x0 x1 : ι → (ι → ο) → ο . λ x2 . λ x3 : ι → ο . and (PNo_strict_upperbd x0 x2 x3) (PNo_strict_lowerbd x1 x2 x3)
Definition PNo_least_repPNo_least_rep := λ x0 x1 : ι → (ι → ο) → ο . λ x2 . λ x3 : ι → ο . and (and (ordinal x2) (PNo_strict_imv x0 x1 x2 x3)) (∀ x4 . x4x2∀ x5 : ι → ο . not (PNo_strict_imv x0 x1 x4 x5))
Known PNo_bd_predPNo_bd_pred : ∀ x0 x1 : ι → (ι → ο) → ο . PNoLt_pwise x0 x1∀ x2 . ordinal x2PNo_lenbdd x2 x0PNo_lenbdd x2 x1PNo_least_rep x0 x1 (PNo_bd x0 x1) (PNo_pred x0 x1)
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Known PNoLt_trichotomy_or_PNoLt_trichotomy_or_ : ∀ x0 x1 : ι → ο . ∀ x2 . ordinal x2or (or (PNoLt_ x2 x0 x1) (PNoEq_ x2 x0 x1)) (PNoLt_ x2 x1 x0)
Param PNo_rel_strict_imvPNo_rel_strict_imv : (ι(ιο) → ο) → (ι(ιο) → ο) → ι(ιο) → ο
Definition PNo_rel_strict_split_imvPNo_rel_strict_split_imv := λ x0 x1 : ι → (ι → ο) → ο . λ x2 . λ x3 : ι → ο . and (PNo_rel_strict_imv x0 x1 (ordsucc x2) (λ x4 . and (x3 x4) (x4 = x2∀ x5 : ο . x5))) (PNo_rel_strict_imv x0 x1 (ordsucc x2) (λ x4 . or (x3 x4) (x4 = x2)))
Known PNo_rel_split_imv_imp_strict_imvPNo_rel_split_imv_imp_strict_imv : ∀ x0 x1 : ι → (ι → ο) → ο . ∀ x2 . ordinal x2∀ x3 : ι → ο . PNo_rel_strict_split_imv x0 x1 x2 x3PNo_strict_imv x0 x1 x2 x3
Known PNoEq_rel_strict_imvPNoEq_rel_strict_imv : ∀ x0 x1 : ι → (ι → ο) → ο . ∀ x2 . ordinal x2∀ x3 x4 : ι → ο . PNoEq_ x2 x3 x4PNo_rel_strict_imv x0 x1 x2 x3PNo_rel_strict_imv x0 x1 x2 x4
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known iff_transiff_trans : ∀ x0 x1 x2 : ο . iff x0 x1iff x1 x2iff x0 x2
Known PNo_extend0_eqPNo_extend0_eq : ∀ x0 . ∀ x1 : ι → ο . PNoEq_ x0 x1 (λ x2 . and (x1 x2) (x2 = x0∀ x3 : ο . x3))
Known PNo_strict_imv_imp_rel_strict_imvPNo_strict_imv_imp_rel_strict_imv : ∀ x0 x1 : ι → (ι → ο) → ο . ∀ x2 . ordinal x2∀ x3 . x3ordsucc x2∀ x4 : ι → ο . PNo_strict_imv x0 x1 x2 x4PNo_rel_strict_imv x0 x1 x3 x4
Known ordinal_ordsucc_Inordinal_ordsucc_In : ∀ x0 . ordinal x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known PNo_extend1_eqPNo_extend1_eq : ∀ x0 . ∀ x1 : ι → ο . PNoEq_ x0 x1 (λ x2 . or (x1 x2) (x2 = x0))
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known PNo_bd_InPNo_bd_In : ∀ x0 x1 : ι → (ι → ο) → ο . PNoLt_pwise x0 x1∀ x2 . ordinal x2PNo_lenbdd x2 x0PNo_lenbdd x2 x1PNo_bd x0 x1ordsucc x2
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known ordinal_linearordinal_linear : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known Subq_binunion_eqSubq_binunion_eq : ∀ x0 x1 . x0x1 = (binunion x0 x1 = x1)
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Known ordinal_famunionordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Theorem SNoCutP_SNoCutSNoCutP_SNoCut : ∀ x0 x1 . SNoCutP x0 x1and (and (and (and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x2 . ordsucc (SNoLev x2))) (famunion x1 (λ x2 . ordsucc (SNoLev x2)))))) (∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1))) (∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2)) (∀ x2 . SNo x2(∀ x3 . x3x0SNoLt x3 x2)(∀ x3 . x3x1SNoLt x2 x3)and (SNoLev (SNoCut x0 x1)SNoLev x2) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x2)) (proof)
Definition SNoS_SNoS_ := λ x0 . {x1 ∈ prim4 (SNoElts_ x0)|∀ x2 : ο . (∀ x3 . and (x3x0) (SNo_ x3 x1)x2)x2}
Theorem SNoS_ESNoS_E : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (∀ x3 . and (x3x0) (SNo_ x3 x1)x2)x2 (proof)
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Theorem SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0 (proof)
Theorem SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1) (proof)
Theorem SNoS_SubqSNoS_Subq : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoS_ x0SNoS_ x1 (proof)
Theorem SNoLev_uniq2SNoLev_uniq2 : ∀ x0 . ordinal x0∀ x1 . SNo_ x0 x1SNoLev x1 = x0 (proof)
Theorem SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2 (proof)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem SNoS_In_neqSNoS_In_neq : ∀ x0 . SNo x0∀ x1 . x1SNoS_ (SNoLev x0)x1 = x0∀ x2 : ο . x2 (proof)
Theorem SNoS_SNoLevSNoS_SNoLev : ∀ x0 . SNo x0x0SNoS_ (ordsucc (SNoLev x0)) (proof)
Definition SNoLSNoL := λ x0 . {x1 ∈ SNoS_ (SNoLev x0)|SNoLt x1 x0}
Definition SNoRSNoR := λ x0 . Sep (SNoS_ (SNoLev x0)) (SNoLt x0)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Theorem SNoCutP_SNoL_SNoRSNoCutP_SNoL_SNoR : ∀ x0 . SNo x0SNoCutP (SNoL x0) (SNoR x0) (proof)
Theorem SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2 (proof)
Theorem SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2 (proof)
Theorem SNoL_SNoSSNoL_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoL x0x1SNoS_ (SNoLev x0) (proof)
Theorem SNoR_SNoSSNoR_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoR x0x1SNoS_ (SNoLev x0) (proof)
Theorem SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0 (proof)
Theorem SNoR_ISNoR_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x1SNoR x0 (proof)
Known ordinal_trichotomy_orordinal_trichotomy_or : ∀ x0 x1 . ordinal x0ordinal x1or (or (x0x1) (x0 = x1)) (x1x0)
Theorem SNo_etaSNo_eta : ∀ x0 . SNo x0x0 = SNoCut (SNoL x0) (SNoR x0) (proof)
Theorem SNoCutP_SNo_SNoCutSNoCutP_SNo_SNoCut : ∀ x0 x1 . SNoCutP x0 x1SNo (SNoCut x0 x1) (proof)
Theorem SNoCutP_SNoCut_LSNoCutP_SNoCut_L : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1) (proof)
Theorem SNoCutP_SNoCut_RSNoCutP_SNoCut_R : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2 (proof)
Theorem SNoCutP_SNoCut_fstSNoCutP_SNoCut_fst : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . SNo x2(∀ x3 . x3x0SNoLt x3 x2)(∀ x3 . x3x1SNoLt x2 x3)and (SNoLev (SNoCut x0 x1)SNoLev x2) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x2) (proof)
Known binintersectE2binintersectE2 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x1
Theorem SNoCut_LeSNoCut_Le : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoLe (SNoCut x0 x1) (SNoCut x2 x3) (proof)
Theorem SNoCut_extSNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3 (proof)
Theorem ordinal_SNo_ordinal_SNo_ : ∀ x0 . ordinal x0SNo_ x0 x0 (proof)
Definition SNo_extend0SNo_extend0 := λ x0 . PSNo (ordsucc (SNoLev x0)) (λ x1 . and (x1x0) (x1 = SNoLev x0∀ x2 : ο . x2))
Definition SNo_extend1SNo_extend1 := λ x0 . PSNo (ordsucc (SNoLev x0)) (λ x1 . or (x1x0) (x1 = SNoLev x0))
Theorem SNo_extend0_SNo_SNo_extend0_SNo_ : ∀ x0 . SNo x0SNo_ (ordsucc (SNoLev x0)) (SNo_extend0 x0) (proof)
Theorem SNo_extend1_SNo_SNo_extend1_SNo_ : ∀ x0 . SNo x0SNo_ (ordsucc (SNoLev x0)) (SNo_extend1 x0) (proof)
Theorem SNo_extend0_SNoSNo_extend0_SNo : ∀ x0 . SNo x0SNo (SNo_extend0 x0) (proof)
Theorem SNo_extend1_SNoSNo_extend1_SNo : ∀ x0 . SNo x0SNo (SNo_extend1 x0) (proof)
Theorem SNo_extend0_SNoLevSNo_extend0_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend0 x0) = ordsucc (SNoLev x0) (proof)
Theorem SNo_extend1_SNoLevSNo_extend1_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend1 x0) = ordsucc (SNoLev x0) (proof)
Theorem SNo_extend0_nInSNo_extend0_nIn : ∀ x0 . SNo x0nIn (SNoLev x0) (SNo_extend0 x0) (proof)
Theorem SNo_extend1_InSNo_extend1_In : ∀ x0 . SNo x0SNoLev x0SNo_extend1 x0 (proof)
Theorem SNo_extend0_SNoEqSNo_extend0_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend0 x0) x0 (proof)
Theorem SNo_extend1_SNoEqSNo_extend1_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend1 x0) x0 (proof)
Theorem ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0 (proof)
Theorem ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0 (proof)
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Theorem ordinal_SNoLev_maxordinal_SNoLev_max : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt x1 x0 (proof)
Theorem ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0 (proof)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known ordinal_indordinal_ind : ∀ x0 : ι → ο . (∀ x1 . ordinal x1(∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . ordinal x1x0 x1
Theorem ordinal_SNoLev_max_2ordinal_SNoLev_max_2 : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1ordsucc x0SNoLe x1 x0 (proof)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1 (proof)
Theorem SNo_etaESNo_etaE : ∀ x0 . SNo x0∀ x1 : ο . (∀ x2 x3 . SNoCutP x2 x3(∀ x4 . x4x2SNoLev x4SNoLev x0)(∀ x4 . x4x3SNoLev x4SNoLev x0)x0 = SNoCut x2 x3x1)x1 (proof)
Theorem SNo_indSNo_ind : ∀ x0 : ι → ο . (∀ x1 x2 . SNoCutP x1 x2(∀ x3 . x3x1x0 x3)(∀ x3 . x3x2x0 x3)x0 (SNoCut x1 x2))∀ x1 . SNo x1x0 x1 (proof)

previous assets