current assets |
---|
df774../b2481.. bday: 38757 doc published by PrCmT..Known 02f51.. : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ ∀ x14 : ο . (∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ not (x6 x15 (x1 (x3 x4 x16) (x9 x17 x18 x16)) x19 = x4) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x1 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x3 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x2 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x5 x20 x21 = x2 (x1 x21 x20) (x1 x20 x21)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x5 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ x6 x20 x21 x22 = x2 (x1 x20 (x1 x21 x22)) (x1 (x1 x20 x21) x22)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ In (x6 x20 x21 x22) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x7 x20 x21 = x2 x20 (x1 x21 x20)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x7 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ x8 x20 x21 x22 = x2 (x1 x21 x20) (x1 x21 (x1 x20 x22))) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ In (x8 x20 x21 x22) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ x9 x20 x21 x22 = x3 (x1 (x1 x22 x20) x21) (x1 x20 x21)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ ∀ x22 . In x22 x0 ⟶ In (x9 x20 x21 x22) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x10 x20 x21 = x1 x20 (x1 x21 (x2 x20 x4))) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x10 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x12 x20 x21 = x1 (x2 x20 x21) (x2 (x2 x20 x4) x4)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x12 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x11 x20 x21 = x1 (x1 (x3 x4 x20) x21) x20) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x11 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x13 x20 x21 = x1 (x3 x4 (x3 x4 x20)) (x3 x21 x20)) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ In (x13 x20 x21) x0) ⟶ (∀ x20 . In x20 x0 ⟶ x1 x4 x20 = x20) ⟶ (∀ x20 . In x20 x0 ⟶ x1 x20 x4 = x20) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x2 x20 (x1 x20 x21) = x21) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x1 x20 (x2 x20 x21) = x21) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x3 (x1 x20 x21) x21 = x20) ⟶ (∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x1 (x3 x20 x21) x21 = x20) ⟶ x14) ⟶ x14Known notEnotE : ∀ x0 : ο . not x0 ⟶ x0 ⟶ FalseTheorem b51f4..conj_AIM2_TMGMc1LwvYTjZDx5wRav3ZtcGSbKBVxDo64 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : ι → ι → ι . ∀ x8 x9 : ι → ι → ι → ι . ∀ x10 x11 x12 x13 : ι → ι → ι . Loop_with_defs_cex2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ⟶ In x4 x0 ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x8 x14 x15 (x10 x16 (x12 x14 (x9 x15 x16 (x8 x14 x15 (x10 x16 (x12 x14 (x9 x15 x16 (x8 x14 x15 (x10 x16 (x12 x14 (x9 x15 x16 x17))))))))))) = x17) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x8 x14 x15 (x7 x16 (x7 x14 (x8 x15 x16 (x8 x14 x15 (x7 x16 (x7 x14 (x8 x15 x16 x17))))))) = x17) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x10 x14 (x12 x15 (x12 x16 x17)) = x12 x15 (x12 x16 (x10 x14 x17))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x8 x14 x15 (x12 x16 (x7 x17 x18)) = x12 x16 (x7 x17 (x8 x14 x15 x18))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x12 x15 (x12 x16 (x7 x17 x18))) = x12 x16 (x7 x17 (x12 x14 (x12 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x7 x14 (x10 x15 (x12 x16 (x12 x17 x18))) = x12 x16 (x12 x17 (x7 x14 (x10 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x10 x14 (x12 x15 (x10 x16 (x10 x17 x18))) = x10 x16 (x10 x17 (x10 x14 (x12 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x10 x15 (x7 x16 (x12 x17 x18))) = x7 x16 (x12 x17 (x12 x14 (x10 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x13 x15 (x12 x16 (x13 x17 x18))) = x12 x16 (x13 x17 (x12 x14 (x13 x15 x18)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ x8 x14 x15 (x13 x16 (x10 x17 (x7 x18 x19))) = x10 x17 (x7 x18 (x8 x14 x15 (x13 x16 x19)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ x9 x14 x15 (x7 x16 (x7 x17 (x12 x18 x19))) = x7 x17 (x12 x18 (x9 x14 x15 (x7 x16 x19)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x8 x14 x15 (x13 x16 (x8 x17 x18 (x10 x19 x20))) = x8 x17 x18 (x10 x19 (x8 x14 x15 (x13 x16 x20)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ x9 x14 x15 (x12 x16 (x8 x17 x18 (x7 x19 x20))) = x8 x17 x18 (x7 x19 (x9 x14 x15 (x12 x16 x20)))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x10 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x9 x14 x15 (x13 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x12 x17 (x8 x18 x19 (x10 x20 x21)))) = x8 x18 x19 (x10 x20 (x9 x14 x15 (x13 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x7 x16 (x12 x17 (x8 x18 x19 (x10 x20 x21)))) = x8 x18 x19 (x10 x20 (x9 x14 x15 (x7 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x10 x16 (x10 x17 (x8 x18 x19 (x7 x20 x21)))) = x8 x18 x19 (x7 x20 (x9 x14 x15 (x10 x16 (x10 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x7 x16 (x12 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x8 x14 x15 (x7 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x13 x16 (x7 x17 (x9 x18 x19 (x10 x20 x21)))) = x9 x18 x19 (x10 x20 (x9 x14 x15 (x13 x16 (x7 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x7 x16 (x12 x17 (x8 x18 x19 (x12 x20 x21)))) = x8 x18 x19 (x12 x20 (x9 x14 x15 (x7 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x8 x14 x15 (x12 x16 (x12 x17 (x9 x18 x19 (x10 x20 x21)))) = x9 x18 x19 (x10 x20 (x8 x14 x15 (x12 x16 (x12 x17 x21))))) ⟶ (∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ ∀ x19 . In x19 x0 ⟶ ∀ x20 . In x20 x0 ⟶ ∀ x21 . In x21 x0 ⟶ x9 x14 x15 (x12 x16 (x10 x17 (x9 x18 x19 (x12 x20 x21)))) = x9 x18 x19 (x12 x20 (x9 x14 x15 (x12 x16 (x10 x17 x21))))) ⟶ False (proof)
|
|