Search for blocks/addresses/...
Proofgold Address
address
PUVhmxSzL8TVwC4b2MYZgVazCinWGahFruA
total
0
mg
-
conjpub
-
current assets
efcf4..
/
4f79e..
bday:
12595
doc published by
PrGxv..
Param
nat_p
nat_p
:
ι
→
ο
Param
CSNo
CSNo
:
ι
→
ο
Param
SNo
SNo
:
ι
→
ο
Known
SNo_CSNo
SNo_CSNo
:
∀ x0 .
SNo
x0
⟶
CSNo
x0
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Theorem
8e48f..
:
∀ x0 .
nat_p
x0
⟶
CSNo
x0
(proof)
Param
omega
omega
:
ι
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
cda83..
:
∀ x0 .
x0
∈
omega
⟶
CSNo
x0
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_2
nat_2
:
nat_p
2
Theorem
b5896..
:
CSNo
2
(proof)
Known
nat_3
nat_3
:
nat_p
3
Theorem
4ca87..
:
CSNo
3
(proof)
Known
nat_4
nat_4
:
nat_p
4
Theorem
867a5..
:
CSNo
4
(proof)
Known
nat_5
nat_5
:
nat_p
5
Theorem
39239..
:
CSNo
5
(proof)
Known
nat_6
nat_6
:
nat_p
6
Theorem
178fe..
:
CSNo
6
(proof)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
nat_7
nat_7
:
nat_p
7
(proof)
Theorem
nat_8
nat_8
:
nat_p
8
(proof)
Theorem
nat_9
nat_9
:
nat_p
9
(proof)
Theorem
nat_10
nat_10
:
nat_p
10
(proof)
Theorem
nat_11
nat_11
:
nat_p
11
(proof)
Theorem
nat_12
nat_12
:
nat_p
12
(proof)
Theorem
98eed..
:
CSNo
7
(proof)
Theorem
ffd25..
:
CSNo
8
(proof)
Theorem
805c6..
:
CSNo
9
(proof)
Theorem
46c70..
:
CSNo
10
(proof)
Theorem
d5cda..
:
CSNo
11
(proof)
Theorem
bcdcb..
:
CSNo
12
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Known
add_SNo_add_CSNo
add_SNo_add_CSNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_CSNo
x0
x1
Theorem
e3ea0..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_CSNo
x0
x1
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
15de6..
mul_SNo_mul_CSNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_CSNo
x0
x1
Theorem
3fd00..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_CSNo
x0
x1
(proof)
Known
SNo_1
SNo_1
:
SNo
1
Known
add_SNo_1_ordsucc
add_SNo_1_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
add_SNo
x0
1
=
ordsucc
x0
Theorem
ba236..
:
∀ x0 .
x0
∈
omega
⟶
add_CSNo
x0
1
=
ordsucc
x0
(proof)
Known
add_SNo_1_1_2
add_SNo_1_1_2
:
add_SNo
1
1
=
2
Theorem
ac420..
:
add_CSNo
1
1
=
2
(proof)
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
d87c7..
:
∀ x0 .
x0
∈
omega
⟶
add_CSNo
x0
1
∈
omega
(proof)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Theorem
d7cb6..
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
add_CSNo
x0
1
)
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Theorem
0d126..
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
add_CSNo
x1
1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Theorem
5322b..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_CSNo
x0
x1
)
(proof)
Theorem
3ca48..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_CSNo
x0
x1
∈
omega
(proof)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Theorem
62e8d..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_CSNo
x0
x1
)
(proof)
Theorem
cad16..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_CSNo
x0
x1
∈
omega
(proof)
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
minus_SNo_minus_CSNo
minus_SNo_minus_CSNo
:
∀ x0 .
SNo
x0
⟶
minus_SNo
x0
=
minus_CSNo
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Theorem
38e3f..
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_CSNo
x0
)
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Param
SNoS_
SNoS_
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
minus_SNo_SNoS_
minus_SNo_SNoS_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
minus_SNo
x1
∈
SNoS_
x0
Theorem
4be12..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
minus_CSNo
x1
∈
SNoS_
x0
(proof)
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Theorem
d19ee..
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_CSNo
x0
∈
SNoS_
omega
(proof)
Known
SNo_0
SNo_0
:
SNo
0
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Theorem
49d57..
:
minus_CSNo
0
=
0
(proof)
Known
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
Theorem
a2a5a..
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_CSNo
x0
x1
∈
SNoS_
omega
(proof)
Known
mul_SNo_SNoS_omega
mul_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
mul_SNo
x0
x1
∈
SNoS_
omega
Theorem
c48a8..
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
mul_CSNo
x0
x1
∈
SNoS_
omega
(proof)
Param
real
real
:
ι
Known
real_SNo
real_SNo
:
∀ x0 .
x0
∈
real
⟶
SNo
x0
Theorem
19f04..
:
∀ x0 .
x0
∈
real
⟶
CSNo
x0
(proof)
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Theorem
3b174..
:
∀ x0 .
x0
∈
real
⟶
minus_CSNo
x0
∈
real
(proof)
Known
real_add_SNo
real_add_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_SNo
x0
x1
∈
real
Theorem
050a2..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_CSNo
x0
x1
∈
real
(proof)
Known
real_mul_SNo
real_mul_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_SNo
x0
x1
∈
real
Theorem
10a08..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_CSNo
x0
x1
∈
real
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
pos_mul_SNo_Lt
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Theorem
f01a1..
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
(proof)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
nonneg_mul_SNo_Le
nonneg_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Theorem
c79f0..
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
(proof)
Known
neg_mul_SNo_Lt
neg_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
x0
0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x2
x1
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Theorem
8c948..
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
x0
0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x2
x1
⟶
SNoLt
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
(proof)
Known
nonpos_mul_SNo_Le
nonpos_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
x0
0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x2
x1
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Theorem
7eaf7..
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
x0
0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x2
x1
⟶
SNoLe
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
(proof)
Param
int
int
:
ι
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Theorem
17997..
:
∀ x0 .
x0
∈
int
⟶
CSNo
x0
(proof)
Known
int_SNo_cases
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int
⟶
x0
x1
Theorem
8d681..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_CSNo
x1
)
)
⟶
∀ x1 .
x1
∈
int
⟶
x0
x1
(proof)
Known
int_minus_SNo_omega
int_minus_SNo_omega
:
∀ x0 .
x0
∈
omega
⟶
minus_SNo
x0
∈
int
Theorem
5f1f1..
:
∀ x0 .
x0
∈
omega
⟶
minus_CSNo
x0
∈
int
(proof)
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Theorem
fd579..
:
∀ x0 .
x0
∈
int
⟶
minus_CSNo
x0
∈
int
(proof)
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Theorem
17a6b..
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_CSNo
x0
x1
∈
int
(proof)
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Theorem
2ed53..
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_CSNo
x0
x1
∈
int
(proof)
Param
and
and
:
ο
→
ο
→
ο
Known
nonpos_nonneg_0
nonpos_nonneg_0
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
x0
=
minus_SNo
x1
⟶
and
(
x0
=
0
)
(
x1
=
0
)
Theorem
7a28f..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
x0
=
minus_CSNo
x1
⟶
and
(
x0
=
0
)
(
x1
=
0
)
(proof)
Known
add_CSNo_0L
add_CSNo_0L
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
0
x0
=
x0
Known
add_CSNo_minus_CSNo_linv
add_CSNo_minus_CSNo_linv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
(
minus_CSNo
x0
)
x0
=
0
Known
b63e9..
add_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
add_CSNo
x0
x1
)
x2
Known
CSNo_minus_CSNo
CSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
minus_CSNo
x0
)
Theorem
774b1..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
x1
=
add_CSNo
x0
x2
⟶
x1
=
x2
(proof)
Known
80a5b..
add_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
x0
x1
=
add_CSNo
x1
x0
Theorem
91217..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
x2
=
add_CSNo
x1
x2
⟶
x0
=
x1
(proof)
Known
add_CSNo_minus_CSNo_rinv
add_CSNo_minus_CSNo_rinv
:
∀ x0 .
CSNo
x0
⟶
add_CSNo
x0
(
minus_CSNo
x0
)
=
0
Theorem
f31b7..
:
∀ x0 .
CSNo
x0
⟶
minus_CSNo
(
minus_CSNo
x0
)
=
x0
(proof)
Known
b5ed6..
CSNo_0
:
CSNo
0
Known
b904d..
mul_CSNo_distrL
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x0
x2
)
Known
d8721..
CSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
mul_CSNo
x0
x1
)
Theorem
8910b..
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
x0
0
=
0
(proof)
Known
1e9ba..
mul_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
x1
=
mul_CSNo
x1
x0
Theorem
c498d..
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
0
x0
=
0
(proof)
Known
ca69e..
CSNo_1
:
CSNo
1
Theorem
402a9..
:
CSNo
(
minus_CSNo
1
)
(proof)
Known
b0c29..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
mul_CSNo
x0
x2
)
(
mul_CSNo
x1
x2
)
Theorem
83fc4..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
(
minus_CSNo
x0
)
x1
=
minus_CSNo
(
mul_CSNo
x0
x1
)
(proof)
Known
42258..
mul_CSNo_oneL
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
1
x0
=
x0
Theorem
4367a..
:
∀ x0 .
CSNo
x0
⟶
minus_CSNo
x0
=
mul_CSNo
(
minus_CSNo
1
)
x0
(proof)
Theorem
7c9be..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
(
minus_CSNo
x1
)
=
minus_CSNo
(
mul_CSNo
x0
x1
)
(proof)
Theorem
c2cf9..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
(
minus_CSNo
x0
)
(
minus_CSNo
x1
)
=
mul_CSNo
x0
x1
(proof)
Known
CSNo_add_CSNo
CSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x0
x1
)
Theorem
07327..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
(proof)
Theorem
c0d7a..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo
(
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
x3
)
)
)
(proof)
Theorem
3b0a9..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
x3
)
)
=
add_CSNo
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
x3
(proof)
Theorem
77d52..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
x1
(
add_CSNo
x0
x2
)
(proof)
Theorem
d50ac..
:
∀ x0 x1 x2 x3 .
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
x3
)
)
=
add_CSNo
x0
(
add_CSNo
x2
(
add_CSNo
x1
x3
)
)
(proof)
Theorem
0158e..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
(
add_CSNo
x0
x1
)
x2
=
add_CSNo
(
add_CSNo
x0
x2
)
x1
(proof)
Theorem
9cf3a..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
(
add_CSNo
x0
x1
)
(
add_CSNo
x2
x3
)
=
add_CSNo
(
add_CSNo
x0
x2
)
(
add_CSNo
x1
x3
)
(proof)
Theorem
830c3..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
add_CSNo
x0
(
add_CSNo
x1
x2
)
=
add_CSNo
x2
(
add_CSNo
x0
x1
)
(proof)
Theorem
bc2ff..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
x3
)
)
=
add_CSNo
x3
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
(proof)
Theorem
f4c9f..
:
∀ x0 x1 x2 x3 x4 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo
x4
⟶
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
(
add_CSNo
x3
x4
)
)
)
=
add_CSNo
x4
(
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
x3
)
)
)
(proof)
Theorem
fda98..
:
∀ x0 x1 x2 x3 x4 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo
x4
⟶
add_CSNo
x0
(
add_CSNo
x1
(
add_CSNo
x2
(
add_CSNo
x3
x4
)
)
)
=
add_CSNo
x3
(
add_CSNo
x4
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
)
(proof)
Theorem
23844..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
(
minus_CSNo
x0
)
(
add_CSNo
x0
x1
)
=
x1
(proof)
Theorem
c3fb2..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
add_CSNo
x0
(
add_CSNo
(
minus_CSNo
x0
)
x1
)
=
x1
(proof)
Theorem
f6d70..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
(
add_CSNo
(
minus_CSNo
x2
)
x3
)
=
add_CSNo
x0
(
add_CSNo
x1
x3
)
(proof)
Theorem
a5bd5..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
(
add_CSNo
x0
(
add_CSNo
x1
x2
)
)
(
add_CSNo
x3
(
minus_CSNo
x2
)
)
=
add_CSNo
x0
(
add_CSNo
x1
x3
)
(proof)
Theorem
da08a..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
add_CSNo
(
add_CSNo
x0
(
add_CSNo
x1
(
minus_CSNo
x2
)
)
)
(
add_CSNo
x2
x3
)
=
add_CSNo
x0
(
add_CSNo
x1
x3
)
(proof)
Theorem
be33e..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
minus_CSNo
(
add_CSNo
x0
x1
)
=
add_CSNo
(
minus_CSNo
x0
)
(
minus_CSNo
x1
)
(proof)
Theorem
08a29..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
(
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
)
(proof)
Theorem
58b75..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo
(
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
x3
)
)
)
(proof)
Known
8912c..
mul_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
Theorem
ca54e..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
x3
)
)
=
mul_CSNo
(
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
)
x3
(proof)
Theorem
4ef1d..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
x1
(
mul_CSNo
x0
x2
)
(proof)
Theorem
68fb9..
:
∀ x0 x1 x2 x3 .
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
x3
)
)
=
mul_CSNo
x0
(
mul_CSNo
x2
(
mul_CSNo
x1
x3
)
)
(proof)
Theorem
f89cf..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
=
mul_CSNo
(
mul_CSNo
x0
x2
)
x1
(proof)
Theorem
4f364..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
mul_CSNo
(
mul_CSNo
x0
x1
)
(
mul_CSNo
x2
x3
)
=
mul_CSNo
(
mul_CSNo
x0
x2
)
(
mul_CSNo
x1
x3
)
(proof)
Theorem
95f36..
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
x2
(
mul_CSNo
x0
x1
)
(proof)
Theorem
dc318..
:
∀ x0 x1 x2 x3 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
x3
)
)
=
mul_CSNo
x3
(
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
)
(proof)
Theorem
7db7f..
:
∀ x0 x1 x2 x3 x4 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo
x4
⟶
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
(
mul_CSNo
x3
x4
)
)
)
=
mul_CSNo
x4
(
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
x3
)
)
)
(proof)
Theorem
aa263..
:
∀ x0 x1 x2 x3 x4 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
CSNo
x3
⟶
CSNo
x4
⟶
mul_CSNo
x0
(
mul_CSNo
x1
(
mul_CSNo
x2
(
mul_CSNo
x3
x4
)
)
)
=
mul_CSNo
x3
(
mul_CSNo
x4
(
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
)
)
(proof)
previous assets