Search for blocks/addresses/...

Proofgold Address

address
PUVhmxSzL8TVwC4b2MYZgVazCinWGahFruA
total
0
mg
-
conjpub
-
current assets
efcf4../4f79e.. bday: 12595 doc published by PrGxv..
Param nat_pnat_p : ιο
Param CSNoCSNo : ιο
Param SNoSNo : ιο
Known SNo_CSNoSNo_CSNo : ∀ x0 . SNo x0CSNo x0
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Theorem 8e48f.. : ∀ x0 . nat_p x0CSNo x0 (proof)
Param omegaomega : ι
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Theorem cda83.. : ∀ x0 . x0omegaCSNo x0 (proof)
Param ordsuccordsucc : ιι
Known nat_2nat_2 : nat_p 2
Theorem b5896.. : CSNo 2 (proof)
Known nat_3nat_3 : nat_p 3
Theorem 4ca87.. : CSNo 3 (proof)
Known nat_4nat_4 : nat_p 4
Theorem 867a5.. : CSNo 4 (proof)
Known nat_5nat_5 : nat_p 5
Theorem 39239.. : CSNo 5 (proof)
Known nat_6nat_6 : nat_p 6
Theorem 178fe.. : CSNo 6 (proof)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem nat_7nat_7 : nat_p 7 (proof)
Theorem nat_8nat_8 : nat_p 8 (proof)
Theorem nat_9nat_9 : nat_p 9 (proof)
Theorem nat_10nat_10 : nat_p 10 (proof)
Theorem nat_11nat_11 : nat_p 11 (proof)
Theorem nat_12nat_12 : nat_p 12 (proof)
Theorem 98eed.. : CSNo 7 (proof)
Theorem ffd25.. : CSNo 8 (proof)
Theorem 805c6.. : CSNo 9 (proof)
Theorem 46c70.. : CSNo 10 (proof)
Theorem d5cda.. : CSNo 11 (proof)
Theorem bcdcb.. : CSNo 12 (proof)
Param add_natadd_nat : ιιι
Param add_CSNoadd_CSNo : ιιι
Param add_SNoadd_SNo : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known add_SNo_add_CSNoadd_SNo_add_CSNo : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_CSNo x0 x1
Theorem e3ea0.. : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_CSNo x0 x1 (proof)
Param mul_natmul_nat : ιιι
Param mul_CSNomul_CSNo : ιιι
Param mul_SNomul_SNo : ιιι
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known 15de6..mul_SNo_mul_CSNo : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_CSNo x0 x1
Theorem 3fd00.. : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_CSNo x0 x1 (proof)
Known SNo_1SNo_1 : SNo 1
Known add_SNo_1_ordsuccadd_SNo_1_ordsucc : ∀ x0 . x0omegaadd_SNo x0 1 = ordsucc x0
Theorem ba236.. : ∀ x0 . x0omegaadd_CSNo x0 1 = ordsucc x0 (proof)
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Theorem ac420.. : add_CSNo 1 1 = 2 (proof)
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Theorem d87c7.. : ∀ x0 . x0omegaadd_CSNo x0 1omega (proof)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Theorem d7cb6.. : ∀ x0 . nat_p x0nat_p (add_CSNo x0 1) (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Theorem 0d126.. : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (add_CSNo x1 1))∀ x1 . nat_p x1x0 x1 (proof)
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Theorem 5322b.. : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_CSNo x0 x1) (proof)
Theorem 3ca48.. : ∀ x0 . x0omega∀ x1 . x1omegaadd_CSNo x0 x1omega (proof)
Known mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Theorem 62e8d.. : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_CSNo x0 x1) (proof)
Theorem cad16.. : ∀ x0 . x0omega∀ x1 . x1omegamul_CSNo x0 x1omega (proof)
Param minus_CSNominus_CSNo : ιι
Param minus_SNominus_SNo : ιι
Known minus_SNo_minus_CSNominus_SNo_minus_CSNo : ∀ x0 . SNo x0minus_SNo x0 = minus_CSNo x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Theorem 38e3f.. : ∀ x0 . SNo x0SNo (minus_CSNo x0) (proof)
Param ordinalordinal : ιο
Param SNoS_SNoS_ : ιι
Param SNoLevSNoLev : ιι
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known minus_SNo_SNoS_minus_SNo_SNoS_ : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0minus_SNo x1SNoS_ x0
Theorem 4be12.. : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0minus_CSNo x1SNoS_ x0 (proof)
Known omega_ordinalomega_ordinal : ordinal omega
Theorem d19ee.. : ∀ x0 . x0SNoS_ omegaminus_CSNo x0SNoS_ omega (proof)
Known SNo_0SNo_0 : SNo 0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Theorem 49d57.. : minus_CSNo 0 = 0 (proof)
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Theorem a2a5a.. : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_CSNo x0 x1SNoS_ omega (proof)
Known mul_SNo_SNoS_omegamul_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegamul_SNo x0 x1SNoS_ omega
Theorem c48a8.. : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegamul_CSNo x0 x1SNoS_ omega (proof)
Param realreal : ι
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Theorem 19f04.. : ∀ x0 . x0realCSNo x0 (proof)
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Theorem 3b174.. : ∀ x0 . x0realminus_CSNo x0real (proof)
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Theorem 050a2.. : ∀ x0 . x0real∀ x1 . x1realadd_CSNo x0 x1real (proof)
Known real_mul_SNoreal_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real
Theorem 10a08.. : ∀ x0 . x0real∀ x1 . x1realmul_CSNo x0 x1real (proof)
Param SNoLtSNoLt : ιιο
Known pos_mul_SNo_Ltpos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem f01a1.. : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_CSNo x0 x1) (mul_CSNo x0 x2) (proof)
Param SNoLeSNoLe : ιιο
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem c79f0.. : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_CSNo x0 x1) (mul_CSNo x0 x2) (proof)
Known neg_mul_SNo_Ltneg_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt x0 0SNo x1SNo x2SNoLt x2 x1SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem 8c948.. : ∀ x0 x1 x2 . SNo x0SNoLt x0 0SNo x1SNo x2SNoLt x2 x1SNoLt (mul_CSNo x0 x1) (mul_CSNo x0 x2) (proof)
Known nonpos_mul_SNo_Lenonpos_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe x0 0SNo x1SNo x2SNoLe x2 x1SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem 7eaf7.. : ∀ x0 x1 x2 . SNo x0SNoLe x0 0SNo x1SNo x2SNoLe x2 x1SNoLe (mul_CSNo x0 x1) (mul_CSNo x0 x2) (proof)
Param intint : ι
Known int_SNoint_SNo : ∀ x0 . x0intSNo x0
Theorem 17997.. : ∀ x0 . x0intCSNo x0 (proof)
Known int_SNo_casesint_SNo_cases : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_SNo x1))∀ x1 . x1intx0 x1
Theorem 8d681.. : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_CSNo x1))∀ x1 . x1intx0 x1 (proof)
Known int_minus_SNo_omegaint_minus_SNo_omega : ∀ x0 . x0omegaminus_SNo x0int
Theorem 5f1f1.. : ∀ x0 . x0omegaminus_CSNo x0int (proof)
Known int_minus_SNoint_minus_SNo : ∀ x0 . x0intminus_SNo x0int
Theorem fd579.. : ∀ x0 . x0intminus_CSNo x0int (proof)
Known int_add_SNoint_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int
Theorem 17a6b.. : ∀ x0 . x0int∀ x1 . x1intadd_CSNo x0 x1int (proof)
Known int_mul_SNoint_mul_SNo : ∀ x0 . x0int∀ x1 . x1intmul_SNo x0 x1int
Theorem 2ed53.. : ∀ x0 . x0int∀ x1 . x1intmul_CSNo x0 x1int (proof)
Param andand : οοο
Known nonpos_nonneg_0nonpos_nonneg_0 : ∀ x0 . x0omega∀ x1 . x1omegax0 = minus_SNo x1and (x0 = 0) (x1 = 0)
Theorem 7a28f.. : ∀ x0 . x0omega∀ x1 . x1omegax0 = minus_CSNo x1and (x0 = 0) (x1 = 0) (proof)
Known add_CSNo_0Ladd_CSNo_0L : ∀ x0 . CSNo x0add_CSNo 0 x0 = x0
Known add_CSNo_minus_CSNo_linvadd_CSNo_minus_CSNo_linv : ∀ x0 . CSNo x0add_CSNo (minus_CSNo x0) x0 = 0
Known b63e9..add_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 (add_CSNo x1 x2) = add_CSNo (add_CSNo x0 x1) x2
Known CSNo_minus_CSNoCSNo_minus_CSNo : ∀ x0 . CSNo x0CSNo (minus_CSNo x0)
Theorem 774b1.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 x1 = add_CSNo x0 x2x1 = x2 (proof)
Known 80a5b..add_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1add_CSNo x0 x1 = add_CSNo x1 x0
Theorem 91217.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 x2 = add_CSNo x1 x2x0 = x1 (proof)
Known add_CSNo_minus_CSNo_rinvadd_CSNo_minus_CSNo_rinv : ∀ x0 . CSNo x0add_CSNo x0 (minus_CSNo x0) = 0
Theorem f31b7.. : ∀ x0 . CSNo x0minus_CSNo (minus_CSNo x0) = x0 (proof)
Known b5ed6..CSNo_0 : CSNo 0
Known b904d..mul_CSNo_distrL : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (add_CSNo x1 x2) = add_CSNo (mul_CSNo x0 x1) (mul_CSNo x0 x2)
Known d8721..CSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (mul_CSNo x0 x1)
Theorem 8910b.. : ∀ x0 . CSNo x0mul_CSNo x0 0 = 0 (proof)
Known 1e9ba..mul_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 x1 = mul_CSNo x1 x0
Theorem c498d.. : ∀ x0 . CSNo x0mul_CSNo 0 x0 = 0 (proof)
Known ca69e..CSNo_1 : CSNo 1
Theorem 402a9.. : CSNo (minus_CSNo 1) (proof)
Known b0c29.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo (add_CSNo x0 x1) x2 = add_CSNo (mul_CSNo x0 x2) (mul_CSNo x1 x2)
Theorem 83fc4.. : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo (minus_CSNo x0) x1 = minus_CSNo (mul_CSNo x0 x1) (proof)
Known 42258..mul_CSNo_oneL : ∀ x0 . CSNo x0mul_CSNo 1 x0 = x0
Theorem 4367a.. : ∀ x0 . CSNo x0minus_CSNo x0 = mul_CSNo (minus_CSNo 1) x0 (proof)
Theorem 7c9be.. : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 (minus_CSNo x1) = minus_CSNo (mul_CSNo x0 x1) (proof)
Theorem c2cf9.. : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo (minus_CSNo x0) (minus_CSNo x1) = mul_CSNo x0 x1 (proof)
Known CSNo_add_CSNoCSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (add_CSNo x0 x1)
Theorem 07327.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2CSNo (add_CSNo x0 (add_CSNo x1 x2)) (proof)
Theorem c0d7a.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo (add_CSNo x0 (add_CSNo x1 (add_CSNo x2 x3))) (proof)
Theorem 3b0a9.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo x0 (add_CSNo x1 (add_CSNo x2 x3)) = add_CSNo (add_CSNo x0 (add_CSNo x1 x2)) x3 (proof)
Theorem 77d52.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 (add_CSNo x1 x2) = add_CSNo x1 (add_CSNo x0 x2) (proof)
Theorem d50ac.. : ∀ x0 x1 x2 x3 . CSNo x1CSNo x2CSNo x3add_CSNo x0 (add_CSNo x1 (add_CSNo x2 x3)) = add_CSNo x0 (add_CSNo x2 (add_CSNo x1 x3)) (proof)
Theorem 0158e.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo (add_CSNo x0 x1) x2 = add_CSNo (add_CSNo x0 x2) x1 (proof)
Theorem 9cf3a.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo (add_CSNo x0 x1) (add_CSNo x2 x3) = add_CSNo (add_CSNo x0 x2) (add_CSNo x1 x3) (proof)
Theorem 830c3.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2add_CSNo x0 (add_CSNo x1 x2) = add_CSNo x2 (add_CSNo x0 x1) (proof)
Theorem bc2ff.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo x0 (add_CSNo x1 (add_CSNo x2 x3)) = add_CSNo x3 (add_CSNo x0 (add_CSNo x1 x2)) (proof)
Theorem f4c9f.. : ∀ x0 x1 x2 x3 x4 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo x4add_CSNo x0 (add_CSNo x1 (add_CSNo x2 (add_CSNo x3 x4))) = add_CSNo x4 (add_CSNo x0 (add_CSNo x1 (add_CSNo x2 x3))) (proof)
Theorem fda98.. : ∀ x0 x1 x2 x3 x4 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo x4add_CSNo x0 (add_CSNo x1 (add_CSNo x2 (add_CSNo x3 x4))) = add_CSNo x3 (add_CSNo x4 (add_CSNo x0 (add_CSNo x1 x2))) (proof)
Theorem 23844.. : ∀ x0 x1 . CSNo x0CSNo x1add_CSNo (minus_CSNo x0) (add_CSNo x0 x1) = x1 (proof)
Theorem c3fb2.. : ∀ x0 x1 . CSNo x0CSNo x1add_CSNo x0 (add_CSNo (minus_CSNo x0) x1) = x1 (proof)
Theorem f6d70.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo (add_CSNo x0 (add_CSNo x1 x2)) (add_CSNo (minus_CSNo x2) x3) = add_CSNo x0 (add_CSNo x1 x3) (proof)
Theorem a5bd5.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo (add_CSNo x0 (add_CSNo x1 x2)) (add_CSNo x3 (minus_CSNo x2)) = add_CSNo x0 (add_CSNo x1 x3) (proof)
Theorem da08a.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3add_CSNo (add_CSNo x0 (add_CSNo x1 (minus_CSNo x2))) (add_CSNo x2 x3) = add_CSNo x0 (add_CSNo x1 x3) (proof)
Theorem be33e.. : ∀ x0 x1 . CSNo x0CSNo x1minus_CSNo (add_CSNo x0 x1) = add_CSNo (minus_CSNo x0) (minus_CSNo x1) (proof)
Theorem 08a29.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2CSNo (mul_CSNo x0 (mul_CSNo x1 x2)) (proof)
Theorem 58b75.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo (mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 x3))) (proof)
Known 8912c..mul_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo (mul_CSNo x0 x1) x2
Theorem ca54e.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 x3)) = mul_CSNo (mul_CSNo x0 (mul_CSNo x1 x2)) x3 (proof)
Theorem 4ef1d.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo x1 (mul_CSNo x0 x2) (proof)
Theorem 68fb9.. : ∀ x0 x1 x2 x3 . CSNo x1CSNo x2CSNo x3mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 x3)) = mul_CSNo x0 (mul_CSNo x2 (mul_CSNo x1 x3)) (proof)
Theorem f89cf.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo (mul_CSNo x0 x1) x2 = mul_CSNo (mul_CSNo x0 x2) x1 (proof)
Theorem 4f364.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3mul_CSNo (mul_CSNo x0 x1) (mul_CSNo x2 x3) = mul_CSNo (mul_CSNo x0 x2) (mul_CSNo x1 x3) (proof)
Theorem 95f36.. : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo x2 (mul_CSNo x0 x1) (proof)
Theorem dc318.. : ∀ x0 x1 x2 x3 . CSNo x0CSNo x1CSNo x2CSNo x3mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 x3)) = mul_CSNo x3 (mul_CSNo x0 (mul_CSNo x1 x2)) (proof)
Theorem 7db7f.. : ∀ x0 x1 x2 x3 x4 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo x4mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 (mul_CSNo x3 x4))) = mul_CSNo x4 (mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 x3))) (proof)
Theorem aa263.. : ∀ x0 x1 x2 x3 x4 . CSNo x0CSNo x1CSNo x2CSNo x3CSNo x4mul_CSNo x0 (mul_CSNo x1 (mul_CSNo x2 (mul_CSNo x3 x4))) = mul_CSNo x3 (mul_CSNo x4 (mul_CSNo x0 (mul_CSNo x1 x2))) (proof)

previous assets