Search for blocks/addresses/...
Proofgold Address
address
PUWUUM2QRUAoVLgx1Rwt5BcfUA5KWWtZpMK
total
0
mg
-
conjpub
-
current assets
651e7..
/
8c386..
bday:
31416
doc published by
Pr4zB..
Definition
Church17_lt8
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x9
)
⟶
x1
x0
Definition
TwoRamseyGraph_3_6_Church17
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
)
Param
84660..
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
768c1..
:
(
(
λ x1 x2 .
x2
)
=
λ x1 x2 .
x1
)
⟶
∀ x0 : ο .
x0
Known
89411..
:
84660..
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x1
)
Known
3a574..
:
84660..
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x3
)
Theorem
14b16..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x11
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x11
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
TwoRamseyGraph_3_6_17
:
ι
→
ι
→
ο
Param
u15
:
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
e8716..
:
∀ x0 .
atleastp
u2
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
)
⟶
x1
Param
Church17_p
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Param
u17_to_Church17
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Param
u16
:
ι
Definition
u17
:=
ordsucc
u16
Known
67bc1..
:
∀ x0 .
x0
∈
u8
⟶
Church17_lt8
(
u17_to_Church17
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
d8d63..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
or
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x3
)
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
Known
e7def..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x8
)
Known
d0d1e..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 .
x1
∈
u17
⟶
(
TwoRamseyGraph_3_6_Church17
(
u17_to_Church17
x0
)
(
u17_to_Church17
x1
)
=
λ x3 x4 .
x3
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
Known
6a4e9..
:
u8
∈
u17
Known
48ba7..
:
u17_to_Church17
u8
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x9
Known
7e8b2..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x15
)
Known
31b8d..
:
u15
∈
u17
Known
c424d..
:
u17_to_Church17
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x16
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
b4098..
:
∀ x0 .
x0
∈
u17
⟶
84660..
(
u17_to_Church17
x0
)
⟶
x0
∈
u4
Known
078d9..
:
u8
⊆
u17
Known
27a8a..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_p
x0
Theorem
bc8bd..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u8
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u15
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Known
f1b43..
:
84660..
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x2
)
Theorem
13c46..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x13
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Param
u12
:
ι
Known
4f699..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x10
)
Known
e886d..
:
u10
∈
u17
Known
d7087..
:
u17_to_Church17
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x11
Known
d5e0f..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x12
)
Known
a1a10..
:
u12
∈
u17
Known
a52d8..
:
u17_to_Church17
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x13
Theorem
6d6a7..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u10
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u12
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Known
3badb..
:
84660..
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
)
Theorem
c08c6..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x12
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x12
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Known
a8b9a..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x9
)
Known
fd1a6..
:
u9
∈
u17
Known
a3fb1..
:
u17_to_Church17
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x10
Known
51598..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x13
)
Known
7315d..
:
u13
∈
u17
Known
0975c..
:
u17_to_Church17
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x14
Known
15dad..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x14
)
Known
35e01..
:
u14
∈
u17
Known
cf897..
:
u17_to_Church17
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x15
Theorem
0f921..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u9
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u13
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u14
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Theorem
f2049..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
7eaa0..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u12
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u13
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u14
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Theorem
02b51..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
b1955..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u12
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u13
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u15
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Theorem
904e1..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x15
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
e49bb..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u12
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u14
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u15
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Theorem
e0cec..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt8
x0
⟶
Church17_lt8
x1
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x16
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x17
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x18
)
=
λ x3 x4 .
x4
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
⟶
∀ x2 : ο .
(
84660..
x0
⟶
x2
)
⟶
(
84660..
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
1318a..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u13
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u14
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u15
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Param
u22
:
ι
Definition
94591..
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x3
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x3
x3
x2
x2
x2
x3
)
(
x1
x3
x3
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x2
x2
)
(
x1
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x3
x2
x2
)
Param
55574..
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
0aea9..
:=
λ x0 x1 .
x0
∈
u22
⟶
x1
∈
u22
⟶
94591..
(
55574..
x0
)
(
55574..
x1
)
=
λ x3 x4 .
x3
Known
1e4e8..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
Known
a0edc..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 .
x1
∈
u17
⟶
TwoRamseyGraph_3_6_17
x0
x1
⟶
0aea9..
x0
x1
Theorem
2e7e5..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Param
u21
:
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
u11
:
ι
Param
ordinal
ordinal
:
ι
→
ο
Param
nat_p
nat_p
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Known
2ec5a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
atleastp
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x2
)
⟶
x2
Known
nat_4
nat_4
:
nat_p
4
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
be1cd..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x1
=
binunion
x3
(
Sing
x4
)
⟶
x2
)
⟶
x2
Known
nat_3
nat_3
:
nat_p
3
Definition
nSubq
nSubq
:=
λ x0 x1 .
not
(
x0
⊆
x1
)
Known
nat_2
nat_2
:
nat_p
2
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
ee881..
:
∀ x0 .
x0
∈
setminus
u16
u12
⟶
∀ x1 :
ι → ο
.
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
9cadc..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
893fe..
:
add_nat
u4
u1
=
u5
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_1
nat_1
:
nat_p
1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Known
d778e..
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
equip
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
2d2af..
:
u12
⊆
u17
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
nat_12
nat_12
:
nat_p
u12
Known
49949..
:
∀ x0 .
x0
∈
setminus
u12
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
bd770..
:
u6
⊆
u8
Known
021ac..
:
u7
⊆
u8
Known
9e99f..
:
55574..
u8
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x9
Known
2ab0d..
:
55574..
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x13
Known
896c4..
:
55574..
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x10
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
5786d..
:
∀ x0 .
x0
∈
setminus
u13
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
Known
151b0..
:
55574..
u7
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x8
Known
0b155..
:
55574..
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x14
Known
89d98..
:
55574..
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x11
Known
bf41f..
:
∀ x0 .
x0
∈
setminus
u12
u8
⟶
∀ x1 :
ι → ο
.
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
Known
a1137..
:
∀ x0 .
x0
∈
setminus
u14
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
x0
Known
8ef56..
:
55574..
u6
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x7
Known
38fc2..
:
55574..
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x15
Known
a2937..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u8
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u9
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
Known
76683..
:
55574..
u11
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x12
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
0b225..
:
u13
=
u8
⟶
∀ x0 : ο .
x0
Known
0420f..
:
∀ x0 .
x0
∈
setminus
u15
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
x0
Known
134b9..
:
55574..
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x16
Known
c0db6..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u8
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u10
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
nat_8
nat_8
:
nat_p
8
Known
3a7bc..
:
u15
=
u9
⟶
∀ x0 : ο .
x0
Known
f5ab5..
:
u14
=
u10
⟶
∀ x0 : ο .
x0
Known
nat_0
nat_0
:
nat_p
0
Known
cases_8
cases_8
:
∀ x0 .
x0
∈
u8
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
x0
Known
In_0_4
In_0_4
:
0
∈
4
Known
In_1_4
In_1_4
:
1
∈
4
Known
In_2_4
In_2_4
:
2
∈
4
Known
In_3_4
In_3_4
:
3
∈
4
Known
4b742..
:
u15
=
u4
⟶
∀ x0 : ο .
x0
Known
5f4d4..
:
55574..
u4
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x5
Known
07eba..
:
u12
=
u5
⟶
∀ x0 : ο .
x0
Known
b535d..
:
55574..
u5
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x6
Known
62d80..
:
u14
=
u6
⟶
∀ x0 : ο .
x0
Known
d9b35..
:
u13
=
u7
⟶
∀ x0 : ο .
x0
Known
a6a6c..
:
u12
=
u8
⟶
∀ x0 : ο .
x0
Known
22885..
:
u12
=
u9
⟶
∀ x0 : ο .
x0
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
u4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
x0
Known
7410a..
:
55574..
0
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x1
Known
e86b0..
:
55574..
u17
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x18
Known
aafc6..
:
55574..
u1
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x2
Known
667cd..
:
55574..
u21
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x22
Known
fa851..
:
55574..
u2
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x3
Known
9379b..
:
55574..
u3
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x4
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
620a1..
:
∀ x0 .
x0
⊆
u6
⟶
atleastp
u4
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
Known
nat_6
nat_6
:
nat_p
6
Known
480b2..
:
add_nat
u3
u1
=
u4
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_16
nat_16
:
nat_p
u16
Theorem
50d90..
:
∀ x0 .
x0
⊆
u16
⟶
atleastp
u5
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u17
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u21
)
)
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
(proof)
previous assets