Search for blocks/addresses/...
Proofgold Address
address
PUWsrtMbayBR51BMHLBrsJ39dM7xg8ojgX4
total
0
mg
-
conjpub
-
current assets
20919..
/
4894a..
bday:
23950
doc published by
Pr5Zc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
even_nat
even_nat
:=
λ x0 .
and
(
x0
∈
omega
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
x0
=
mul_nat
2
x2
)
⟶
x1
)
⟶
x1
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
odd_nat
odd_nat
:=
λ x0 .
and
(
x0
∈
omega
)
(
∀ x1 .
x1
∈
omega
⟶
x0
=
mul_nat
2
x1
⟶
∀ x2 : ο .
x2
)
Known
even_nat_not_odd_nat
even_nat_not_odd_nat
:
∀ x0 .
even_nat
x0
⟶
not
(
odd_nat
x0
)
Param
nat_p
nat_p
:
ι
→
ο
Known
even_nat_double
even_nat_double
:
∀ x0 .
nat_p
x0
⟶
even_nat
(
mul_nat
2
x0
)
Param
exactly1of2
exactly1of2
:
ο
→
ο
→
ο
Known
even_nat_xor_S
even_nat_xor_S
:
∀ x0 .
nat_p
x0
⟶
exactly1of2
(
even_nat
x0
)
(
even_nat
(
ordsucc
x0
)
)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_2
nat_2
:
nat_p
2
Param
SNo
SNo
:
ι
→
ο
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Param
eps_
eps_
:
ι
→
ι
Known
eps_1_half_eq3
eps_1_half_eq3
:
mul_SNo
(
eps_
1
)
2
=
1
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
Known
nat_1
nat_1
:
nat_p
1
Theorem
double_nat_cancel
double_nat_cancel
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
2
x0
=
mul_nat
2
x1
⟶
x0
=
x1
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
nat_0
nat_0
:
nat_p
0
Known
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Theorem
even_nat_0
even_nat_0
:
even_nat
0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
exactly1of2_E
exactly1of2_E
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
not
x1
⟶
x2
)
⟶
(
not
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
even_nat_or_odd_nat
even_nat_or_odd_nat
:
∀ x0 .
nat_p
x0
⟶
or
(
even_nat
x0
)
(
odd_nat
x0
)
(proof)
Theorem
not_odd_nat_0
not_odd_nat_0
:
not
(
odd_nat
0
)
(proof)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
even_nat_odd_nat_S
even_nat_odd_nat_S
:
∀ x0 .
even_nat
x0
⟶
odd_nat
(
ordsucc
x0
)
(proof)
Theorem
odd_nat_even_nat_S
odd_nat_even_nat_S
:
∀ x0 .
odd_nat
x0
⟶
even_nat
(
ordsucc
x0
)
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
exactly1of2_I2
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
exactly1of2_I1
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
Theorem
odd_nat_xor_odd_sum
odd_nat_xor_odd_sum
:
∀ x0 .
odd_nat
x0
⟶
∀ x1 .
nat_p
x1
⟶
exactly1of2
(
odd_nat
x1
)
(
odd_nat
(
add_nat
x0
x1
)
)
(proof)
Param
iff
iff
:
ο
→
ο
→
ο
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
iffER
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
Known
iffEL
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Theorem
odd_nat_iff_odd_mul_nat
odd_nat_iff_odd_mul_nat
:
∀ x0 .
odd_nat
x0
⟶
∀ x1 .
nat_p
x1
⟶
iff
(
odd_nat
x1
)
(
odd_nat
(
mul_nat
x0
x1
)
)
(proof)
Theorem
odd_nat_mul_nat
odd_nat_mul_nat
:
∀ x0 x1 .
odd_nat
x0
⟶
odd_nat
x1
⟶
odd_nat
(
mul_nat
x0
x1
)
(proof)
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Theorem
add_nat_0_inv
add_nat_0_inv
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
0
⟶
and
(
x0
=
0
)
(
x1
=
0
)
(proof)
Theorem
mul_nat_0_inv
mul_nat_0_inv
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
0
⟶
or
(
x0
=
0
)
(
x1
=
0
)
(proof)
Known
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Known
In_1_2
In_1_2
:
1
∈
2
Known
add_nat_0L
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_ordsucc_In
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
ordsucc_in_double_nat_ordsucc
ordsucc_in_double_nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
ordsucc
x0
∈
mul_nat
2
(
ordsucc
x0
)
(proof)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
double_nat_Subq_0
double_nat_Subq_0
:
∀ x0 .
nat_p
x0
⟶
mul_nat
2
x0
⊆
x0
⟶
x0
=
0
(proof)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Theorem
add_nat_Subq_L
add_nat_Subq_R
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
x0
⊆
add_nat
x0
x1
(proof)
Known
Empty_Subq_eq
Empty_Subq_eq
:
∀ x0 .
x0
⊆
0
⟶
x0
=
0
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
mul_nat_SL
mul_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
(
ordsucc
x0
)
x1
=
add_nat
(
mul_nat
x0
x1
)
x1
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Theorem
square_nat_Subq
square_nat_Subq
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
x0
⊆
x1
⟶
mul_nat
x0
x0
⊆
mul_nat
x1
x1
(proof)
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
mul_nat_asso
mul_nat_asso
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
mul_nat
x0
x1
)
x2
=
mul_nat
x0
(
mul_nat
x1
x2
)
Known
mul_nat_com
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
Theorem
form100_1_v1_lem
form100_1_v1_lem
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x0
=
mul_nat
2
(
mul_nat
x1
x1
)
⟶
x1
=
0
(proof)
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
form100_1_v1
form100_1_v1
:
∀ x0 .
x0
∈
setminus
omega
1
⟶
∀ x1 .
x1
∈
setminus
omega
1
⟶
mul_nat
x0
x0
=
mul_nat
2
(
mul_nat
x1
x1
)
⟶
∀ x2 : ο .
x2
(proof)
previous assets