current assets |
---|
51389../c88a7.. bday: 4954 doc published by Pr6Pc..Param explicit_Ring_with_idexplicit_Ring_with_id : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οDefinition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Known explicit_Ring_with_id_Iexplicit_Ring_with_id_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5) ⟶ x1 ∈ x0 ⟶ (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x5 : ο . x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ x4 x5 x2 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7)) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 (x3 x5 x6) x7 = x3 (x4 x5 x7) (x4 x6 x7)) ⟶ explicit_Ring_with_id x0 x1 x2 x3 x4Known explicit_Ring_with_id_Eexplicit_Ring_with_id_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Ring_with_id x0 x1 x2 x3 x4 ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 = x3 x7 x6) ⟶ x1 ∈ x0 ⟶ (∀ x6 . x6 ∈ x0 ⟶ x3 x1 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 : ο . (∀ x8 . and (x8 ∈ x0) (x3 x6 x8 = x1) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x6 : ο . x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ x4 x2 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ x4 x6 x2 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8)) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 (x3 x6 x7) x8 = x3 (x4 x6 x8) (x4 x7 x8)) ⟶ x5) ⟶ explicit_Ring_with_id x0 x1 x2 x3 x4 ⟶ x5Param nat_primrecnat_primrec : ι → (ι → ι → ι) → ι → ιDefinition explicit_Ring_with_id_exp_natexplicit_Ring_with_id_exp_nat := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 . nat_primrec x2 (λ x6 . x4 x5)Param apap : ι → ι → ιDefinition explicit_Ring_with_id_eval_polyexplicit_Ring_with_id_eval_poly := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 x6 x7 . nat_primrec x1 (λ x8 . x3 (x4 (ap x6 x8) (explicit_Ring_with_id_exp_nat x0 x1 x2 x3 x4 x7 x8))) x5Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem 745b1.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x5 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x6 x7 x8) ⟶ explicit_Ring_with_id x0 x1 x2 x3 x4 ⟶ explicit_Ring_with_id x0 x1 x2 x5 x6 (proof)Param iffiff : ο → ο → οKnown iffIiffI : ∀ x0 x1 : ο . (x0 ⟶ x1) ⟶ (x1 ⟶ x0) ⟶ iff x0 x1Theorem explicit_Ring_with_id_repindepexplicit_Ring_with_id_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x5 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x6 x7 x8) ⟶ iff (explicit_Ring_with_id x0 x1 x2 x3 x4) (explicit_Ring_with_id x0 x1 x2 x5 x6) (proof)Param explicit_CRing_with_idexplicit_CRing_with_id : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οKnown explicit_CRing_with_id_Iexplicit_CRing_with_id_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5) ⟶ x1 ∈ x0 ⟶ (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = x4 x6 x5) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x5 : ο . x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7)) ⟶ explicit_CRing_with_id x0 x1 x2 x3 x4Known explicit_CRing_with_id_Eexplicit_CRing_with_id_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_CRing_with_id x0 x1 x2 x3 x4 ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 = x3 x7 x6) ⟶ x1 ∈ x0 ⟶ (∀ x6 . x6 ∈ x0 ⟶ x3 x1 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 : ο . (∀ x8 . and (x8 ∈ x0) (x3 x6 x8 = x1) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x6 : ο . x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ x4 x2 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8)) ⟶ x5) ⟶ explicit_CRing_with_id x0 x1 x2 x3 x4 ⟶ x5Theorem 7d9f7.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x5 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x6 x7 x8) ⟶ explicit_CRing_with_id x0 x1 x2 x3 x4 ⟶ explicit_CRing_with_id x0 x1 x2 x5 x6 (proof)Theorem explicit_CRing_with_id_repindepexplicit_CRing_with_id_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x5 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x6 x7 x8) ⟶ iff (explicit_CRing_with_id x0 x1 x2 x3 x4) (explicit_CRing_with_id x0 x1 x2 x5 x6) (proof)Param explicit_Fieldexplicit_Field : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οKnown explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 = x3 x7 x6) ⟶ x1 ∈ x0 ⟶ (∀ x6 . x6 ∈ x0 ⟶ x3 x1 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 : ο . (∀ x8 . and (x8 ∈ x0) (x3 x6 x8 = x1) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x6 : ο . x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ x4 x2 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ (x6 = x1 ⟶ ∀ x7 : ο . x7) ⟶ ∀ x7 : ο . (∀ x8 . and (x8 ∈ x0) (x4 x6 x8 = x2) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8)) ⟶ x5) ⟶ explicit_Field x0 x1 x2 x3 x4 ⟶ x5Known explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5) ⟶ x1 ∈ x0 ⟶ (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = x4 x6 x5) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x5 : ο . x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ (x5 = x1 ⟶ ∀ x6 : ο . x6) ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x4 x5 x7 = x2) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7)) ⟶ explicit_Field x0 x1 x2 x3 x4Theorem f16ac.. : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x5 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x6 x7 x8) ⟶ explicit_Field x0 x1 x2 x3 x4 ⟶ explicit_Field x0 x1 x2 x5 x6 (proof)Theorem explicit_Field_repindepexplicit_Field_repindep : ∀ x0 x1 x2 . ∀ x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x5 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x6 x7 x8) ⟶ iff (explicit_Field x0 x1 x2 x3 x4) (explicit_Field x0 x1 x2 x5 x6) (proof)Theorem 17e44.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ explicit_CRing_with_id x0 x1 x2 x3 x4 (proof)Param pack_b_b_e_epack_b_b_e_e : ι → (ι → ι → ι) → (ι → ι → ι) → ι → ι → ιDefinition struct_b_b_e_estruct_b_b_e_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x1 (pack_b_b_e_e x2 x3 x4 x5 x6)) ⟶ x1 x0Param unpack_b_b_e_e_ounpack_b_b_e_e_o : ι → (ι → (ι → ι → ι) → (ι → ι → ι) → ι → ι → ο) → οKnown unpack_b_b_e_e_o_equnpack_b_b_e_e_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → ι → ι → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_e_e_o (pack_b_b_e_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5Definition Ring_with_idRing_with_id := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Ring_with_id x1 x4 x5 x2 x3))Known prop_extprop_ext : ∀ x0 x1 : ο . iff x0 x1 ⟶ x0 = x1Theorem Ring_with_id_unpack_eqRing_with_id_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_Ring_with_id x6 x9 x10 x7 x8) = explicit_Ring_with_id x0 x3 x4 x1 x2 (proof)Definition CRing_with_idCRing_with_id := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_CRing_with_id x1 x4 x5 x2 x3))Theorem CRing_with_id_unpack_eqCRing_with_id_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_CRing_with_id x6 x9 x10 x7 x8) = explicit_CRing_with_id x0 x3 x4 x1 x2 (proof)Definition FieldField := λ x0 . and (struct_b_b_e_e x0) (unpack_b_b_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 x5 . explicit_Field x1 x4 x5 x2 x3))Theorem Field_unpack_eqField_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 . unpack_b_b_e_e_o (pack_b_b_e_e x0 x1 x2 x3 x4) (λ x6 . λ x7 x8 : ι → ι → ι . λ x9 x10 . explicit_Field x6 x9 x10 x7 x8) = explicit_Field x0 x3 x4 x1 x2 (proof)Known explicit_CRing_with_id_Ring_with_idexplicit_CRing_with_id_Ring_with_id : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_CRing_with_id x0 x1 x2 x3 x4 ⟶ explicit_Ring_with_id x0 x1 x2 x3 x4Theorem CRing_with_id_is_Ring_with_idCRing_with_id_is_Ring_with_id : ∀ x0 . CRing_with_id x0 ⟶ Ring_with_id x0 (proof)Theorem Field_is_CRing_with_idField_is_CRing_with_id : ∀ x0 . Field x0 ⟶ CRing_with_id x0 (proof)
|
|