Search for blocks/addresses/...
Proofgold Address
address
PUYBjgGPrqUhLEvabRCv5wFzEKjCUBboMZQ
total
0
mg
-
conjpub
-
current assets
675e9..
/
d6393..
bday:
2841
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
eb53d..
:
ι
→
CT2
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
783bc..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
0edec..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
783bc..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
e1561..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
x0
=
f482f..
(
783bc..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
ec944..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
783bc..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
6ffdb..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
783bc..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
1d7a9..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
783bc..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
8844f..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
783bc..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
e347f..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
783bc..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
46d59..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
783bc..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Theorem
77353..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
783bc..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
6944d..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
783bc..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
b1e5b..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 :
ι → ο
.
783bc..
x0
x2
x4
x6
x8
=
783bc..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
a7310..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 x8 :
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x5
x9
)
(
x6
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
783bc..
x0
x1
x3
x5
x7
=
783bc..
x0
x2
x4
x6
x8
(proof)
Definition
c9ba2..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 x6 :
ι → ο
.
x1
(
783bc..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
4344e..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 x4 :
ι → ο
.
c9ba2..
(
783bc..
x0
x1
x2
x3
x4
)
(proof)
Theorem
0d70c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
c9ba2..
(
783bc..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
75cc6..
:
∀ x0 .
c9ba2..
x0
⟶
x0
=
783bc..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
64ca8..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
7046d..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
64ca8..
(
783bc..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
5d578..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
3a7bb..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
5d578..
(
783bc..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
bebf6..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι → ο
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
x4
)
)
)
)
Theorem
e31dc..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
bebf6..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
4d890..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
f482f..
(
bebf6..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
6bf38..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
bebf6..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
2f459..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
bebf6..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
8d565..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
bebf6..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
546c0..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
bebf6..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
c5e5b..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
bebf6..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
bedba..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
bebf6..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
afc32..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
bebf6..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
7bb35..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x4
=
f482f..
(
bebf6..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
4f115..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι → ο
.
∀ x8 x9 .
bebf6..
x0
x2
x4
x6
x8
=
bebf6..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
x8
=
x9
)
(proof)
Theorem
d3e57..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι → ο
.
∀ x7 .
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
iff
(
x1
x8
)
(
x2
x8
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x4
x8
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
iff
(
x5
x8
)
(
x6
x8
)
)
⟶
bebf6..
x0
x1
x3
x5
x7
=
bebf6..
x0
x2
x4
x6
x7
(proof)
Definition
ab832..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ο
.
∀ x6 .
prim1
x6
x2
⟶
x1
(
bebf6..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
18431..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
ab832..
(
bebf6..
x0
x1
x2
x3
x4
)
(proof)
Theorem
04af0..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
ab832..
(
bebf6..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
a85d0..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
ab832..
(
bebf6..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
5da3a..
:
∀ x0 .
ab832..
x0
⟶
x0
=
bebf6..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
f52fd..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
d409f..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
f52fd..
(
bebf6..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
971dc..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
13766..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
971dc..
(
bebf6..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
6b0a5..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
Theorem
3c3d8..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
6b0a5..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
4bb01..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
x0
=
f482f..
(
6b0a5..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
96968..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
6b0a5..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
cd382..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
6b0a5..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
b21e7..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
6b0a5..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
1c594..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
6b0a5..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
8d5fd..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
6b0a5..
x1
x2
x3
x4
x5
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
c7eb2..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
x3
=
f482f..
(
6b0a5..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
56b62..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
6b0a5..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
5753b..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
x4
=
f482f..
(
6b0a5..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
24d22..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 .
6b0a5..
x0
x2
x4
x6
x8
=
6b0a5..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
(proof)
Theorem
a72a6..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 .
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x0
)
⟶
iff
(
x1
x7
)
(
x2
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x7
x8
=
x4
x7
x8
)
⟶
6b0a5..
x0
x1
x3
x5
x6
=
6b0a5..
x0
x2
x4
x5
x6
(proof)
Definition
8b540..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
6b0a5..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
08cf8..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
8b540..
(
6b0a5..
x0
x1
x2
x3
x4
)
(proof)
Theorem
da0e2..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
8b540..
(
6b0a5..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
402fa..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
8b540..
(
6b0a5..
x0
x1
x2
x3
x4
)
⟶
prim1
x3
x0
(proof)
Theorem
6c39d..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
8b540..
(
6b0a5..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
ae43e..
:
∀ x0 .
8b540..
x0
⟶
x0
=
6b0a5..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
d0646..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
5ba00..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
d0646..
(
6b0a5..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
3b3d8..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
1eb75..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
3b3d8..
(
6b0a5..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
34992..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 x4 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
d2155..
x0
x3
)
(
d2155..
x0
x4
)
)
)
)
)
Theorem
6998e..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
34992..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
af941..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 :
ι →
ι → ο
.
x5
x0
(
f482f..
(
34992..
x0
x1
x2
x3
x4
)
4a7ef..
)
⟶
x5
(
f482f..
(
34992..
x0
x1
x2
x3
x4
)
4a7ef..
)
x0
(proof)
Theorem
9c9ff..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
34992..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
0a284..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
34992..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
6d328..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
34992..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
0f0c4..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x2
x5
=
f482f..
(
f482f..
(
34992..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
7173f..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
34992..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
fa07e..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
(
34992..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Theorem
bcf71..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
34992..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x5
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
x7
(proof)
Theorem
c22ae..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
2b2e3..
(
f482f..
(
34992..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
(proof)
Theorem
c0c2b..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 x8 x9 :
ι →
ι → ο
.
34992..
x0
x2
x4
x6
x8
=
34992..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
x10
x11
=
x9
x10
x11
)
(proof)
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
2f911..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 x7 x8 :
ι →
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x3
x9
=
x4
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x5
x9
x10
)
(
x6
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x7
x9
x10
)
(
x8
x9
x10
)
)
⟶
34992..
x0
x1
x3
x5
x7
=
34992..
x0
x2
x4
x6
x8
(proof)
Definition
49161..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 x6 :
ι →
ι → ο
.
x1
(
34992..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
30c66..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 x4 :
ι →
ι → ο
.
49161..
(
34992..
x0
x1
x2
x3
x4
)
(proof)
Theorem
58b23..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
49161..
(
34992..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x5
)
x0
(proof)
Theorem
3f026..
:
∀ x0 .
49161..
x0
⟶
x0
=
34992..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
cd973..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
9e0ff..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
cd973..
(
34992..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
0d56c..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
caeb2..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
0d56c..
(
34992..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
previous assets