Search for blocks/addresses/...
Proofgold Address
address
PUZC8Xdrq5m7rHVyWYgamqf74eJY6y1Uy3i
total
0
mg
-
conjpub
-
current assets
57363..
/
ef99a..
bday:
6992
doc published by
Pr6Pc..
Param
In_rec_ii
In_rec_ii
:
(
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
) →
ι
→
ι
→
ι
Param
If_ii
If_ii
:
ο
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Definition
nat_primrec_ii
:=
λ x0 :
ι → ι
.
λ x1 :
ι →
(
ι → ι
)
→
ι → ι
.
In_rec_ii
(
λ x2 .
λ x3 :
ι →
ι → ι
.
If_ii
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
If_ii_0
If_ii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
not
x0
⟶
If_ii
x0
x1
x2
=
x2
Theorem
fe983..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
(
ι → ι
)
→
ι → ι
.
∀ x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
x3
x5
=
x4
x5
)
⟶
If_ii
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
=
If_ii
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x4
(
prim3
x2
)
)
)
x0
(proof)
Known
In_rec_ii_eq
In_rec_ii_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_ii
x0
x1
=
x0
x1
(
In_rec_ii
x0
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
496a9..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
(
ι → ι
)
→
ι → ι
.
nat_primrec_ii
x0
x1
0
=
x0
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
Union_ordsucc_eq
Union_ordsucc_eq
:
∀ x0 .
nat_p
x0
⟶
prim3
(
ordsucc
x0
)
=
x0
Known
If_ii_1
If_ii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
x0
⟶
If_ii
x0
x1
x2
=
x1
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
8092f..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
(
ι → ι
)
→
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec_ii
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec_ii
x0
x1
x2
)
(proof)
Param
In_rec_iii
In_rec_iii
:
(
ι
→
(
ι
→
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
→
ι
Param
If_iii
If_iii
:
ο
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Definition
nat_primrec_iii
:=
λ x0 :
ι →
ι → ι
.
λ x1 :
ι →
(
ι →
ι → ι
)
→
ι →
ι → ι
.
In_rec_iii
(
λ x2 .
λ x3 :
ι →
ι →
ι → ι
.
If_iii
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
)
Known
If_iii_0
If_iii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
not
x0
⟶
If_iii
x0
x1
x2
=
x2
Theorem
3d3bd..
:
∀ x0 :
ι →
ι → ι
.
∀ x1 :
ι →
(
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x2 .
∀ x3 x4 :
ι →
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
x3
x5
=
x4
x5
)
⟶
If_iii
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
=
If_iii
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x4
(
prim3
x2
)
)
)
x0
(proof)
Known
In_rec_iii_eq
In_rec_iii_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_iii
x0
x1
=
x0
x1
(
In_rec_iii
x0
)
Theorem
c3d57..
:
∀ x0 :
ι →
ι → ι
.
∀ x1 :
ι →
(
ι →
ι → ι
)
→
ι →
ι → ι
.
nat_primrec_iii
x0
x1
0
=
x0
(proof)
Known
If_iii_1
If_iii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
x0
⟶
If_iii
x0
x1
x2
=
x1
Theorem
50acb..
:
∀ x0 :
ι →
ι → ι
.
∀ x1 :
ι →
(
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec_iii
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec_iii
x0
x1
x2
)
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Theorem
a0d40..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
nat_p
x2
⟶
x1
(
ordsucc
x2
)
)
⟶
x1
x0
(proof)
Param
omega
omega
:
ι
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Theorem
b767b..
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
x1
∈
omega
⟶
x0
x1
(proof)
Theorem
3c0c7..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
x2
∈
omega
⟶
x1
(
ordsucc
x2
)
)
⟶
x1
x0
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
lamE2
lamE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
x4
x6
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
f0163..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
x4
⟶
x2
=
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x4
x5
)
⟶
x3
)
⟶
x3
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Known
ap_const_0
ap_const_0
:
∀ x0 .
ap
0
x0
=
0
Theorem
a3ed9..
:
∀ x0 x1 x2 .
ap
x0
x1
=
x2
⟶
(
x2
=
0
⟶
∀ x3 : ο .
x3
)
⟶
x0
=
0
⟶
∀ x3 : ο .
x3
(proof)
Known
nat_0
nat_0
:
nat_p
0
Theorem
e4648..
:
0
∈
omega
(proof)
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
fded7..
:
1
∈
omega
(proof)
Theorem
74a82..
:
2
∈
omega
(proof)
Theorem
973f5..
:
3
∈
omega
(proof)
Theorem
a590d..
:
4
∈
omega
(proof)
Theorem
1cf06..
:
5
∈
omega
(proof)
Theorem
bacd6..
:
6
∈
omega
(proof)
Theorem
1328b..
:
7
∈
omega
(proof)
Theorem
315a5..
:
8
∈
omega
(proof)
Theorem
ee345..
:
9
∈
omega
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
4ec03..
:=
λ x0 x1 .
lam
omega
(
nat_primrec
x0
(
λ x2 x3 .
ap
x1
x2
)
)
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
46adb..
:
∀ x0 x1 .
ap
(
4ec03..
x0
x1
)
0
=
x0
(proof)
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
5bda7..
:
∀ x0 x1 x2 .
x2
∈
omega
⟶
ap
(
4ec03..
x0
x1
)
(
ordsucc
x2
)
=
ap
x1
x2
(proof)
Theorem
cc413..
:
∀ x0 x1 x2 x3 .
x3
∈
omega
⟶
ap
x1
x3
=
x2
⟶
ap
(
4ec03..
x0
x1
)
(
ordsucc
x3
)
=
x2
(proof)
Definition
84af2..
:=
λ x0 .
x0
=
lam
omega
(
ap
x0
)
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
70867..
:
∀ x0 x1 .
84af2..
(
4ec03..
x0
x1
)
(proof)
Known
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Theorem
aee79..
:
∀ x0 .
84af2..
x0
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
ap
x0
x1
⟶
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
∈
x0
(proof)
Theorem
3a762..
:
∀ x0 x1 x2 .
x2
∈
omega
⟶
∀ x3 .
x3
∈
ap
(
4ec03..
x0
x1
)
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
4ec03..
x0
x1
(proof)
Theorem
e0bc1..
:
∀ x0 .
84af2..
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
omega
⟶
∀ x4 .
x4
∈
ap
x0
x3
⟶
x1
=
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x3
x4
)
⟶
x2
)
⟶
x2
(proof)
Theorem
d9636..
:
∀ x0 x1 x2 .
x2
∈
4ec03..
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
omega
⟶
∀ x5 .
x5
∈
ap
(
4ec03..
x0
x1
)
x4
⟶
x2
=
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x4
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
89569..
:
∀ x0 x1 x2 x3 .
4ec03..
x0
x1
=
4ec03..
x2
x3
⟶
x0
=
x2
(proof)
Theorem
4bd46..
:
∀ x0 x1 x2 x3 .
4ec03..
x0
x1
=
4ec03..
x2
x3
⟶
lam
omega
(
ap
x1
)
=
lam
omega
(
ap
x3
)
(proof)
Theorem
9adfe..
:
∀ x0 x1 x2 x3 .
84af2..
x1
⟶
84af2..
x3
⟶
4ec03..
x0
x1
=
4ec03..
x2
x3
⟶
x1
=
x3
(proof)
Known
tuple_2_eta
tuple_2_eta
:
∀ x0 x1 .
lam
2
(
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
)
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
In_0_2
In_0_2
:
0
∈
2
Known
In_1_2
In_1_2
:
1
∈
2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
2b117..
:
∀ x0 x1 .
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
=
4ec03..
x0
(
4ec03..
x1
0
)
(proof)
Known
tuple_3_eta
tuple_3_eta
:
∀ x0 x1 x2 .
lam
3
(
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
)
=
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
In_2_3
In_2_3
:
2
∈
3
Theorem
ed696..
:
∀ x0 x1 x2 .
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
=
4ec03..
x0
(
4ec03..
x1
(
4ec03..
x2
0
)
)
(proof)
Known
tuple_4_eta
tuple_4_eta
:
∀ x0 x1 x2 x3 .
lam
4
(
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
)
=
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
tuple_4_0_eq
tuple_4_0_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
0
=
x0
Known
tuple_4_1_eq
tuple_4_1_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
1
=
x1
Known
tuple_4_2_eq
tuple_4_2_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
2
=
x2
Known
tuple_4_3_eq
tuple_4_3_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
3
=
x3
Known
In_0_4
In_0_4
:
0
∈
4
Known
In_1_4
In_1_4
:
1
∈
4
Known
In_2_4
In_2_4
:
2
∈
4
Known
In_3_4
In_3_4
:
3
∈
4
Theorem
a1414..
:
∀ x0 x1 x2 x3 .
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
=
4ec03..
x0
(
4ec03..
x1
(
4ec03..
x2
(
4ec03..
x3
0
)
)
)
(proof)
Definition
stream_rest
:=
λ x0 .
lam
omega
(
λ x1 .
ap
x0
(
ordsucc
x1
)
)
Theorem
ed853..
:
∀ x0 .
84af2..
(
stream_rest
x0
)
(proof)
Theorem
64afd..
:
∀ x0 x1 .
84af2..
x1
⟶
stream_rest
(
4ec03..
x0
x1
)
=
x1
(proof)
Definition
b38a5..
:=
λ x0 x1 x2 .
nat_primrec_ii
(
λ x3 .
x2
)
(
λ x3 .
λ x4 :
ι → ι
.
λ x5 .
4ec03..
(
ap
x5
0
)
(
x4
(
stream_rest
x5
)
)
)
x0
x1
Theorem
d959a..
:
∀ x0 x1 .
b38a5..
0
x0
x1
=
x1
(proof)
Theorem
8242e..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 x2 .
b38a5..
(
ordsucc
x0
)
x1
x2
=
4ec03..
(
ap
x1
0
)
(
b38a5..
x0
(
stream_rest
x1
)
x2
)
(proof)
Definition
df9be..
:=
nat_primrec_iii
(
λ x0 x1 .
0
)
(
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 x3 .
b38a5..
(
ap
x2
0
)
(
ap
x3
0
)
(
x1
(
stream_rest
x2
)
(
stream_rest
x3
)
)
)
Theorem
87bb6..
:
∀ x0 x1 .
df9be..
0
x0
x1
=
0
(proof)
Theorem
1f5be..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 x2 .
df9be..
(
ordsucc
x0
)
x1
x2
=
b38a5..
(
ap
x1
0
)
(
ap
x2
0
)
(
df9be..
x0
(
stream_rest
x1
)
(
stream_rest
x2
)
)
(proof)
previous assets