current assets |
---|
02d1b../a8629.. bday: 31367 doc published by Pr4zB..Definition 84660.. := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x4) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x5) ⟶ x1 x0Theorem 3badb.. : 84660.. (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0) (proof)Theorem 89411.. : 84660.. (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x1) (proof)Theorem f1b43.. : 84660.. (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x2) (proof)Theorem 3a574.. : 84660.. (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x3) (proof)Param ordsuccordsucc : ι → ιDefinition u1 := 1Definition u2 := ordsucc u1Definition u3 := ordsucc u2Definition u4 := ordsucc u3Param u17_to_Church17 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ιKnown cases_4cases_4 : ∀ x0 . x0 ∈ u4 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 x0Known c5926.. : u17_to_Church17 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x1Known b0ce1.. : u17_to_Church17 u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x2Known e8ec5.. : u17_to_Church17 u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x3Known 1ef08.. : u17_to_Church17 u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x4Theorem 308d2.. : ∀ x0 . x0 ∈ u4 ⟶ 84660.. (u17_to_Church17 x0) (proof)Param Church17_p : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → οKnown e70c8.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0)Known 1b7f9.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x1)Known 25b64.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x2)Known 9e7eb.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x3)Theorem 08c30.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 84660.. x0 ⟶ Church17_p x0 (proof)Definition Church17_lt8 := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x2) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x3) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x4) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x5) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x6) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x7) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x8) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x9) ⟶ x1 x0Definition TwoRamseyGraph_3_6_Church17 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2)Definition FalseFalse := ∀ x0 : ο . x0Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1) ⟶ ∀ x0 : ο . x0Theorem 9ff71.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_lt8 x0 ⟶ Church17_lt8 x1 ⟶ (TwoRamseyGraph_3_6_Church17 x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x11) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x12) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x11) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x12) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x4) ⟶ ∀ x2 : ο . (84660.. x0 ⟶ x2) ⟶ (84660.. x1 ⟶ x2) ⟶ x2 (proof)Theorem 3f26c.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_lt8 x0 ⟶ Church17_lt8 x1 ⟶ (TwoRamseyGraph_3_6_Church17 x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x11) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x0 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x13) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x11) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x1 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x13) = λ x3 x4 . x4) ⟶ (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x4) ⟶ ∀ x2 : ο . (84660.. x0 ⟶ x2) ⟶ (84660.. x1 ⟶ x2) ⟶ x2 (proof)Theorem c3d94.. : ∀ x0 x1 x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_lt8 x0 ⟶ Church17_lt8 x1 ⟶ Church17_lt8 x2 ⟶ (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_6_Church17 x0 x2 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_6_Church17 x1 x2 = λ x4 x5 . x5) ⟶ ∀ x3 : ο . (84660.. x0 ⟶ x3) ⟶ (84660.. x1 ⟶ x3) ⟶ (84660.. x2 ⟶ x3) ⟶ x3 (proof)Known 51a81.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4)Known e224e.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x5)Known 5d397.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x6)Known 3b0d1.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x7)Theorem 27a8a.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_lt8 x0 ⟶ Church17_p x0 (proof)Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param u8 : ιParam u17 : ιParam nat_pnat_p : ι → οKnown nat_transnat_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ x1 ⊆ x0Known nat_17nat_17 : nat_p u17Known 6a4e9.. : u8 ∈ u17Theorem 078d9.. : u8 ⊆ u17 (proof)Param u5 : ιParam u6 : ιParam u7 : ιParam u9 : ιParam u10 : ιParam u11 : ιParam u12 : ιParam u13 : ιParam u14 : ιParam u15 : ιParam u16 : ιDefinition Church17_to_u17 := λ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . x0 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16Known In_0_4In_0_4 : 0 ∈ 4Known In_1_4In_1_4 : 1 ∈ 4Known In_2_4In_2_4 : 2 ∈ 4Known In_3_4In_3_4 : 3 ∈ 4Theorem 68886.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . 84660.. x0 ⟶ Church17_to_u17 x0 ∈ u4 (proof)Known 495f5.. : ∀ x0 . x0 ∈ u17 ⟶ Church17_to_u17 (u17_to_Church17 x0) = x0Theorem b4098.. : ∀ x0 . x0 ∈ u17 ⟶ 84660.. (u17_to_Church17 x0) ⟶ x0 ∈ u4 (proof)Param atleastpatleastp : ι → ι → οDefinition notnot := λ x0 : ο . x0 ⟶ FalseParam TwoRamseyGraph_3_6_17 : ι → ι → οParam andand : ο → ο → οKnown f03aa.. : ∀ x0 . atleastp 3 x0 ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ (x2 = x3 ⟶ ∀ x5 : ο . x5) ⟶ (x2 = x4 ⟶ ∀ x5 : ο . x5) ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1) ⟶ x1Known 67bc1.. : ∀ x0 . x0 ∈ u8 ⟶ Church17_lt8 (u17_to_Church17 x0)Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known d8d63.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church17_p x0 ⟶ Church17_p x1 ⟶ or (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x3) (TwoRamseyGraph_3_6_Church17 x0 x1 = λ x3 x4 . x4)Known d0d1e.. : ∀ x0 . x0 ∈ u17 ⟶ ∀ x1 . x1 ∈ u17 ⟶ (TwoRamseyGraph_3_6_Church17 (u17_to_Church17 x0) (u17_to_Church17 x1) = λ x3 x4 . x3) ⟶ TwoRamseyGraph_3_6_17 x0 x1Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem 1e4e8.. : ∀ x0 . x0 ⊆ u8 ⟶ atleastp u3 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (TwoRamseyGraph_3_6_17 x1 x2)) ⟶ ∀ x1 : ο . (∀ x2 . and (x2 ∈ x0) (x2 ∈ u4) ⟶ x1) ⟶ x1 (proof)Known e8716.. : ∀ x0 . atleastp u2 x0 ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x1) ⟶ x1Known e7def.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x8)Known 48ba7.. : u17_to_Church17 u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x9Known a8b9a.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x9)Known fd1a6.. : u9 ∈ u17Known a3fb1.. : u17_to_Church17 u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x10Theorem a2937.. : ∀ x0 . x0 ⊆ u8 ⟶ atleastp u2 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (TwoRamseyGraph_3_6_17 x1 u8)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (TwoRamseyGraph_3_6_17 x1 u9)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (TwoRamseyGraph_3_6_17 x1 x2)) ⟶ ∀ x1 : ο . (∀ x2 . and (x2 ∈ x0) (x2 ∈ u4) ⟶ x1) ⟶ x1 (proof)Known 4f699.. : Church17_p (λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x10)Known e886d.. : u10 ∈ u17Known d7087.. : u17_to_Church17 u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x11Theorem c0db6.. : ∀ x0 . x0 ⊆ u8 ⟶ atleastp u2 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (TwoRamseyGraph_3_6_17 x1 u8)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ not (TwoRamseyGraph_3_6_17 x1 u10)) ⟶ (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (TwoRamseyGraph_3_6_17 x1 x2)) ⟶ ∀ x1 : ο . (∀ x2 . and (x2 ∈ x0) (x2 ∈ u4) ⟶ x1) ⟶ x1 (proof)
|
|