Search for blocks/addresses/...
Proofgold Address
address
PUZR63Tmh7qw1rYTw4Ly7z9keW4USGL6vjw
total
0
mg
-
conjpub
-
current assets
b687a..
/
5cabe..
bday:
2790
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
f482f..
:
ι
→
ι
→
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
7e4c2..
:
∀ x0 .
∀ x1 :
ι → ι
.
0fc90..
x0
(
f482f..
(
0fc90..
x0
x1
)
)
=
0fc90..
x0
x1
Theorem
3f4b4..
:
∀ x0 x1 x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
)
=
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
(proof)
Theorem
2c4f9..
:
∀ x0 x1 x2 x3 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
)
=
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
(proof)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Known
72f77..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
52da6..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
4a7ef..
=
x0
(proof)
Known
c60fe..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
5c667..
:
4ae4a..
4a7ef..
=
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
c2bca..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
2eaee..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
3a2b6..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
f9d2f..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
11d6d..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
77d87..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
9f6be..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
4a7ef..
=
x0
(proof)
Known
42824..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
8a328..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
68d02..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
142e6..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
778cc..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Known
57b7e..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
daead..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
0c325..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Theorem
62a6b..
:
∀ x0 x1 x2 x3 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
(proof)
Param
3097a..
:
ι
→
(
ι
→
ι
) →
ι
Definition
b5c9f..
:=
λ x0 x1 .
3097a..
x1
(
λ x2 .
x0
)
Known
27474..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
(
x1
x3
)
)
⟶
prim1
(
0fc90..
x0
x2
)
(
3097a..
x0
x1
)
Known
b1d09..
:
∀ x0 .
prim1
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
x1
(
4ae4a..
4a7ef..
)
⟶
x1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
x1
x0
Theorem
29def..
:
∀ x0 x1 x2 x3 .
prim1
x0
x3
⟶
prim1
x1
x3
⟶
prim1
x2
x3
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
b5c9f..
x3
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Param
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Param
ba9d8..
:
ι
→
ο
Known
aa4b6..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
Known
2fbbc..
:
∀ x0 .
ba9d8..
x0
⟶
ba9d8..
(
4ae4a..
x0
)
Known
d7fe6..
:
ba9d8..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
530f4..
:
∀ x0 x1 x2 .
prim1
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
prim1
x1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
prim1
x2
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
bij
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
)
(proof)
Known
aeaf9..
:
∀ x0 .
prim1
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
x1
(
4ae4a..
4a7ef..
)
⟶
x1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
x1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
x1
x0
Theorem
794ec..
:
∀ x0 x1 x2 x3 x4 .
prim1
x0
x4
⟶
prim1
x1
x4
⟶
prim1
x2
x4
⟶
prim1
x3
x4
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
(
b5c9f..
x4
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Theorem
81723..
:
∀ x0 x1 x2 x3 .
prim1
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
prim1
x1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
prim1
x2
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
prim1
x3
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
(
x0
=
x1
⟶
∀ x4 : ο .
x4
)
⟶
(
x0
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x0
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
bij
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x4
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
x3
)
)
)
)
)
(proof)
previous assets