current assets |
---|
7c5e9../2c843.. bday: 36134 doc published by Pr4zB..Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οDefinition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ x5) ⟶ x5Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 27260.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ x0 x5 x7 ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition dfcf9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (27260.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 1668d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (dfcf9.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 33f3e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (1668d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ not (x0 x3 x10) ⟶ x0 x4 x10 ⟶ not (x0 x5 x10) ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 87bb9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (1668d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ x0 x3 x10 ⟶ x0 x4 x10 ⟶ not (x0 x5 x10) ⟶ not (x0 x6 x10) ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 729bd.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (dfcf9.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 9e253.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (729bd.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ x0 x6 x10 ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 76a6c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (dfcf9.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition d4ea7.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (76a6c.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ not (x0 x3 x10) ⟶ not (x0 x4 x10) ⟶ x0 x5 x10 ⟶ x0 x6 x10 ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ not (x0 x3 x6) ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 21422.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition f0d5b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (21422.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 72e0a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (f0d5b.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 33102.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (72e0a.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ x0 x3 x10 ⟶ not (x0 x4 x10) ⟶ not (x0 x5 x10) ⟶ x0 x6 x10 ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition 8f55d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (f0d5b.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition d9cea.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (8f55d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ (x1 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x2 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x3 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x4 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x5 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x6 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x7 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x8 = x10 ⟶ ∀ x12 : ο . x12) ⟶ (x9 = x10 ⟶ ∀ x12 : ο . x12) ⟶ x0 x1 x10 ⟶ not (x0 x2 x10) ⟶ x0 x3 x10 ⟶ not (x0 x4 x10) ⟶ not (x0 x5 x10) ⟶ x0 x6 x10 ⟶ not (x0 x7 x10) ⟶ x0 x8 x10 ⟶ not (x0 x9 x10) ⟶ x11) ⟶ x11Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known 6e391.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 1668d.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ not (x2 x12 x3) ⟶ x13) ⟶ x13Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known 522aa.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ dfcf9.. x1 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ dfcf9.. x1 x9 x8 x4 x5 x7 x6 x3 x2Known be98a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ 1668d.. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ 1668d.. x1 x2 x3 x5 x4 x6 x7 x8 x9 x10Known 256f4.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ 1668d.. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ⟶ 1668d.. x1 x9 x8 x4 x5 x7 x6 x3 x2 x10Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Known SingISingI : ∀ x0 . x0 ∈ Sing x0Theorem c748d.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 1668d.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 33f3e.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x22 x3 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 87bb9.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x22 x3 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 9e253.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x3 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ d4ea7.. x2 x14 x15 x16 x17 x18 x3 x19 x20 x21 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ d4ea7.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x3 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ 33102.. x2 x14 x15 x16 x17 x3 x18 x19 x20 x21 x22 ⟶ x13) ⟶ (∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ d9cea.. x2 x14 x15 x16 x17 x3 x18 x19 x20 x21 x22 ⟶ x13) ⟶ x13 (proof)
|
|