Search for blocks/addresses/...

Proofgold Address

address
PUZgECCZjFJeGWckXVmGzgAsNRys9XBdVuK
total
0
mg
-
conjpub
-
current assets
5f574../a1bc7.. bday: 28850 doc published by Pr5Zc..
Param nat_pnat_p : ιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Param mul_natmul_nat : ιιι
Definition divides_natdivides_nat := λ x0 x1 . and (and (x0omega) (x1omega)) (∀ x2 : ο . (∀ x3 . and (x3omega) (mul_nat x0 x3 = x1)x2)x2)
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Known nat_inv_imprednat_inv_impred : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known nat_0nat_0 : nat_p 0
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known abdca.. : ∀ x0 . nat_p x0divides_nat x0 0
Known add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Param add_SNoadd_SNo : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known 068c4.. : ∀ x0 . nat_p x0∀ x1 x2 . divides_nat x0 x1divides_nat x0 x2divides_nat x0 (add_SNo x1 x2)
Known 91381..divides_nat_ref : ∀ x0 . nat_p x0divides_nat x0 x0
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem d8a45.. : ∀ x0 . nat_p x0(x0 = 0∀ x1 : ο . x1)∀ x1 . nat_p x1∀ x2 : ο . (∀ x3 . and (nat_p x3) (divides_nat x0 (add_nat x1 x3))x2)x2 (proof)
Param SNoSNo : ιο
Param mul_SNomul_SNo : ιιι
Known mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3)
Known SNo_2SNo_2 : SNo 2
Known ecc46.. : mul_SNo 2 2 = 4
Theorem 3c0dd.. : ∀ x0 . SNo x0mul_SNo 4 (mul_SNo x0 x0) = mul_SNo (mul_SNo 2 x0) (mul_SNo 2 x0) (proof)
Param minus_SNominus_SNo : ιι
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem mul_SNo_minus_minusmul_SNo_minus_minus : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) (minus_SNo x1) = mul_SNo x0 x1 (proof)
Theorem bc1cf.. : ∀ x0 . SNo x0mul_SNo (minus_SNo x0) (minus_SNo x0) = mul_SNo x0 x0 (proof)
Param intint : ι
Known int_add_SNoint_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int
Theorem 9cfad.. : ∀ x0 . x0int∀ x1 . x1int∀ x2 . x2intadd_SNo x0 (add_SNo x1 x2)int (proof)
Theorem 79775.. : ∀ x0 . x0int∀ x1 . x1int∀ x2 . x2int∀ x3 . x3intadd_SNo x0 (add_SNo x1 (add_SNo x2 x3))int (proof)
Definition divides_intdivides_int := λ x0 x1 . and (and (x0int) (x1int)) (∀ x2 : ο . (∀ x3 . and (x3int) (mul_SNo x0 x3 = x1)x2)x2)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known nat_p_intnat_p_int : ∀ x0 . nat_p x0x0int
Known nat_1nat_1 : nat_p 1
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known int_SNoint_SNo : ∀ x0 . x0intSNo x0
Theorem divides_int_1divides_int_1 : ∀ x0 . x0intdivides_int 1 x0 (proof)
Known 385cb.. : ∀ x0 x1 . x1int∀ x2 . x2int∀ x3 . x3intdivides_int x0 (add_SNo x1 (minus_SNo x2))divides_int x0 (add_SNo x2 x3)divides_int x0 (add_SNo x1 x3)
Known b1639.. : ∀ x0 x1 . x1int∀ x2 . x2int∀ x3 . x3intdivides_int x0 (add_SNo x2 (minus_SNo x3))divides_int x0 (add_SNo x1 x2)divides_int x0 (add_SNo x1 x3)
Known divides_int_diff_SNo_rev : ∀ x0 x1 . x1int∀ x2 . x2intdivides_int x0 (add_SNo x1 (minus_SNo x2))divides_int x0 (add_SNo x2 (minus_SNo x1))
Theorem 36bee.. : ∀ x0 x1 . x1int∀ x2 . x2int∀ x3 . x3int∀ x4 . x4intdivides_int x0 (add_SNo x2 (minus_SNo x1))divides_int x0 (add_SNo x4 (minus_SNo x3))divides_int x0 (add_SNo x1 x3)divides_int x0 (add_SNo x2 x4) (proof)
Known minus_add_SNo_distrminus_add_SNo_distr : ∀ x0 x1 . SNo x0SNo x1minus_SNo (add_SNo x0 x1) = add_SNo (minus_SNo x0) (minus_SNo x1)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known divides_int_add_SNodivides_int_add_SNo : ∀ x0 x1 x2 . divides_int x0 x1divides_int x0 x2divides_int x0 (add_SNo x1 x2)
Theorem ac707.. : ∀ x0 x1 . x1int∀ x2 . x2int∀ x3 . x3int∀ x4 . x4int∀ x5 . x5int∀ x6 . x6intdivides_int x0 (add_SNo x2 (minus_SNo x1))divides_int x0 (add_SNo x4 (minus_SNo x3))divides_int x0 (add_SNo x6 (minus_SNo x5))divides_int x0 (add_SNo x1 (add_SNo x3 x5))divides_int x0 (add_SNo x2 (add_SNo x4 x6)) (proof)
Known minus_add_SNo_distr_3minus_add_SNo_distr_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2minus_SNo (add_SNo x0 (add_SNo x1 x2)) = add_SNo (minus_SNo x0) (add_SNo (minus_SNo x1) (minus_SNo x2))
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known divides_int_add_SNo_3 : ∀ x0 x1 x2 x3 . divides_int x0 x1divides_int x0 x2divides_int x0 x3divides_int x0 (add_SNo x1 (add_SNo x2 x3))
Theorem 210aa.. : ∀ x0 x1 . x1int∀ x2 . x2int∀ x3 . x3int∀ x4 . x4int∀ x5 . x5int∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intdivides_int x0 (add_SNo x2 (minus_SNo x1))divides_int x0 (add_SNo x4 (minus_SNo x3))divides_int x0 (add_SNo x6 (minus_SNo x5))divides_int x0 (add_SNo x8 (minus_SNo x7))divides_int x0 (add_SNo x1 (add_SNo x3 (add_SNo x5 x7)))divides_int x0 (add_SNo x2 (add_SNo x4 (add_SNo x6 x8))) (proof)
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known divides_int_mul_SNodivides_int_mul_SNo : ∀ x0 x1 x2 x3 . divides_int x0 x2divides_int x1 x3divides_int (mul_SNo x0 x1) (mul_SNo x2 x3)
Theorem divides_int_mul_SNo_Ldivides_int_mul_SNo_L : ∀ x0 x1 x2 . x2intdivides_int x0 x1divides_int x0 (mul_SNo x1 x2) (proof)
Theorem aa325.. : ∀ x0 x1 x2 . x1intdivides_int x0 x2divides_int x0 (mul_SNo x1 x2) (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition prime_natprime_nat := λ x0 . and (and (x0omega) (1x0)) (∀ x1 . x1omegadivides_nat x1 x0or (x1 = 1) (x1 = x0))
Definition odd_natodd_nat := λ x0 . and (x0omega) (∀ x1 . x1omegax0 = mul_nat 2 x1∀ x2 : ο . x2)
Param setminussetminus : ιιι
Param SingSing : ιι
Definition notnot := λ x0 : ο . x0False
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known 7be16.. : ∀ x0 : ι → ο . x0 0x0 1(∀ x1 . nat_p x1x0 (ordsucc (ordsucc x1)))∀ x1 . nat_p x1x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known nat_complete_indnat_complete_ind : ∀ x0 : ι → ο . (∀ x1 . nat_p x1(∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . nat_p x1x0 x1
Param SNoLtSNoLt : ιιο
Param PNoLtPNoLt : ι(ιο) → ι(ιο) → ο
Param PNoEq_PNoEq_ : ι(ιο) → (ιο) → ο
Definition PNoLePNoLe := λ x0 . λ x1 : ι → ο . λ x2 . λ x3 : ι → ο . or (PNoLt x0 x1 x2 x3) (and (x0 = x2) (PNoEq_ x0 x1 x3))
Param SNoLevSNoLev : ιι
Definition SNoLeSNoLe := λ x0 x1 . PNoLe (SNoLev x0) (λ x2 . x2x0) (SNoLev x1) (λ x2 . x2x1)
Param abs_SNoabs_SNo : ιι
Known 2a08a.. : ∀ x0 . nat_p x0(x0 = 0∀ x1 : ο . x1)∀ x1 . nat_p x1∀ x2 : ο . (∀ x3 . and (x3int) (and (SNoLe (mul_SNo 2 (abs_SNo x3)) x0) (divides_nat x0 (add_SNo x1 (minus_SNo x3))))x2)x2
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known a3ea1.. : ∀ x0 x1 . x1int∀ x2 . x2intdivides_int x0 (add_SNo x1 (minus_SNo x2))divides_int x0 (add_SNo (mul_SNo x1 x1) (minus_SNo (mul_SNo x2 x2)))
Known divides_nat_divides_intdivides_nat_divides_int : ∀ x0 x1 . divides_nat x0 x1divides_int x0 x1
Known 6248f.. : ∀ x0 x1 . x1int∀ x2 . x2int∀ x3 . x3int∀ x4 . x4intdivides_int x0 (add_SNo x2 (minus_SNo x3))divides_int x0 (add_SNo x1 (add_SNo x3 x4))divides_int x0 (add_SNo x1 (add_SNo x2 x4))
Known int_minus_SNoint_minus_SNo : ∀ x0 . x0intminus_SNo x0int
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_assoc_4add_SNo_assoc_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo (add_SNo x0 (add_SNo x1 x2)) x3
Known int_mul_SNoint_mul_SNo : ∀ x0 . x0int∀ x1 . x1intmul_SNo x0 x1int
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known SNo_0SNo_0 : SNo 0
Known divides_int_0divides_int_0 : ∀ x0 . x0intdivides_int x0 0
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known nat_0_in_ordsuccnat_0_in_ordsucc : ∀ x0 . nat_p x00ordsucc x0
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Param ordinalordinal : ιο
Known ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known int_SNo_casesint_SNo_cases : ∀ x0 : ι → ο . (∀ x1 . x1omegax0 x1)(∀ x1 . x1omegax0 (minus_SNo x1))∀ x1 . x1intx0 x1
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known minus_SNo_Le_contraminus_SNo_Le_contra : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe (minus_SNo x1) (minus_SNo x0)
Known ordinal_Subq_SNoLeordinal_Subq_SNoLe : ∀ x0 x1 . ordinal x0ordinal x1x0x1SNoLe x0 x1
Known ordinal_Emptyordinal_Empty : ordinal 0
Known Subq_EmptySubq_Empty : ∀ x0 . 0x0
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known pos_mul_SNo_Ltpos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Known SNo_1SNo_1 : SNo 1
Known SNoLt_1_2SNoLt_1_2 : SNoLt 1 2
Known SNo_zero_or_sqr_posSNo_zero_or_sqr_pos : ∀ x0 . SNo x0or (x0 = 0) (SNoLt 0 (mul_SNo x0 x0))
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known 48da5.. : SNo 4
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known mul_SNo_In_omegamul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known mul_SNo_nonzero_cancelmul_SNo_nonzero_cancel_L : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2
Known neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0
Known 1ef08.. : ∀ x0 . SNo x0mul_SNo (abs_SNo x0) (abs_SNo x0) = mul_SNo x0 x0
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known SNo_abs_SNoSNo_abs_SNo : ∀ x0 . SNo x0SNo (abs_SNo x0)
Known SNo_add_SNo_4SNo_add_SNo_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo (add_SNo x0 (add_SNo x1 (add_SNo x2 x3)))
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known 45f87.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 . x0 x2x0 x3x0 x4x0 x5x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5))
Known add_SNo_rotate_4_1add_SNo_rotate_4_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo x3 (add_SNo x0 (add_SNo x1 x2))
Known 3bd3d.. : add_SNo 2 2 = 4
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known add_SNo_Le3add_SNo_Le3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x0 x2SNoLe x1 x3SNoLe (add_SNo x0 x1) (add_SNo x2 x3)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_nonneg_nonnegmul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1)
Known SNoLt_0_2SNoLt_0_2 : SNoLt 0 2
Known 6e9d4.. : ∀ x0 . SNo x0SNoLe 0 (abs_SNo x0)
Known cb85b.. : ∀ x0 x1 x2 x3 x4 . SNo x0SNo x1SNo x2SNo x3SNo x4mul_SNo x4 (add_SNo x0 (add_SNo x1 (add_SNo x2 x3))) = add_SNo (mul_SNo x4 x0) (add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x4 x2) (mul_SNo x4 x3)))
Known 32437.. : SNoLt 0 4
Known 23c65.. : ∀ x0 . SNo x0mul_SNo 4 x0 = add_SNo x0 (add_SNo x0 (add_SNo x0 x0))
Known 7b468.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNoLe x0 x4SNoLe x1 x5SNoLe x2 x6SNoLe x3 x7SNoLe (add_SNo x0 (add_SNo x1 (add_SNo x2 x3))) (add_SNo x4 (add_SNo x5 (add_SNo x6 x7)))
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known mul_SNo_pos_posmul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Known a3d6a.. : ∀ x0 . x0int∀ x1 . x1int∀ x2 . x2int∀ x3 . x3int∀ x4 . x4int∀ x5 . x5intx0 = add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (add_SNo (mul_SNo x4 x4) (mul_SNo x5 x5)))∀ x6 . x6int∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx1 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))mul_SNo x0 x1 = add_SNo (mul_SNo (add_SNo (mul_SNo x2 x7) (add_SNo (mul_SNo x3 x6) (add_SNo (mul_SNo x4 x9) (minus_SNo (mul_SNo x5 x8))))) (add_SNo (mul_SNo x2 x7) (add_SNo (mul_SNo x3 x6) (add_SNo (mul_SNo x4 x9) (minus_SNo (mul_SNo x5 x8)))))) (add_SNo (mul_SNo (add_SNo (mul_SNo x2 x8) (add_SNo (minus_SNo (mul_SNo x3 x9)) (add_SNo (mul_SNo x4 x6) (mul_SNo x5 x7)))) (add_SNo (mul_SNo x2 x8) (add_SNo (minus_SNo (mul_SNo x3 x9)) (add_SNo (mul_SNo x4 x6) (mul_SNo x5 x7))))) (add_SNo (mul_SNo (add_SNo (mul_SNo x2 x9) (add_SNo (mul_SNo x3 x8) (add_SNo (minus_SNo (mul_SNo x4 x7)) (mul_SNo x5 x6)))) (add_SNo (mul_SNo x2 x9) (add_SNo (mul_SNo x3 x8) (add_SNo (minus_SNo (mul_SNo x4 x7)) (mul_SNo x5 x6))))) (mul_SNo (add_SNo (mul_SNo x2 x6) (add_SNo (minus_SNo (mul_SNo x3 x7)) (add_SNo (minus_SNo (mul_SNo x4 x8)) (minus_SNo (mul_SNo x5 x9))))) (add_SNo (mul_SNo x2 x6) (add_SNo (minus_SNo (mul_SNo x3 x7)) (add_SNo (minus_SNo (mul_SNo x4 x8)) (minus_SNo (mul_SNo x5 x9))))))))
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known SNoLe_antisymSNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known divides_int_divides_natdivides_int_divides_nat : ∀ x0 . x0omega∀ x1 . x1omegadivides_int x0 x1divides_nat x0 x1
Known divides_int_add_SNo_4 : ∀ x0 x1 x2 x3 x4 . divides_int x0 x1divides_int x0 x2divides_int x0 x3divides_int x0 x4divides_int x0 (add_SNo x1 (add_SNo x2 (add_SNo x3 x4)))
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known SNo_sqr_nonnegSNo_sqr_nonneg : ∀ x0 . SNo x0SNoLe 0 (mul_SNo x0 x0)
Known 73fab.. : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLe x0 x3SNoLe x1 x4SNoLe x2 x5SNoLe (add_SNo x0 (add_SNo x1 x2)) (add_SNo x3 (add_SNo x4 x5))
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Theorem 69709.. : (∀ x0 . prime_nat x0odd_nat x0∀ x1 : ο . (∀ x2 . and (x2setminus x0 (Sing 0)) (∀ x3 : ο . (∀ x4 . and (x4omega) (∀ x5 : ο . (∀ x6 . and (x6omega) (∀ x7 : ο . (∀ x8 . and (x8omega) (∀ x9 : ο . (∀ x10 . and (x10omega) (mul_SNo x2 x0 = add_SNo (mul_SNo x4 x4) (add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x8 x8) (mul_SNo x10 x10))))x9)x9)x7)x7)x5)x5)x3)x3)x1)x1)(∀ x0 . nat_p x0∀ x1 . x1omega∀ x2 . x2omega∀ x3 . x3omega∀ x4 . x4omegamul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5)∀ x0 . prime_nat x0odd_nat x0∀ x1 : ο . (∀ x2 . and (x2omega) (∀ x3 : ο . (∀ x4 . and (x4omega) (∀ x5 : ο . (∀ x6 . and (x6omega) (∀ x7 : ο . (∀ x8 . and (x8omega) (x0 = add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x4 x4) (add_SNo (mul_SNo x6 x6) (mul_SNo x8 x8))))x7)x7)x5)x5)x3)x3)x1)x1 (proof)

previous assets