Search for blocks/addresses/...

Proofgold Address

address
PUZkx6iJAYNgttu1RCW5QF85PPFNckQ6gd6
total
0
mg
-
conjpub
-
current assets
7e616../47814.. bday: 2364 doc published by PrGxv..
Known ad99c..setprod_def : setprod = λ x1 x2 . lam x1 (λ x3 . x2)
Theorem 3a5bf..setprod_I : ∀ x0 x1 x2 . In x2 (lam x0 (λ x3 . x1))In x2 (setprod x0 x1) (proof)
Theorem e9adc..setprod_E : ∀ x0 x1 x2 . In x2 (setprod x0 x1)In x2 (lam x0 (λ x3 . x1)) (proof)
Known 1194c..ap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (lam x0 x1)In (ap x2 0) x0
Theorem fe28a..ap0_setprod : ∀ x0 x1 x2 . In x2 (setprod x0 x1)In (ap x2 0) x0 (proof)
Known a6609..ap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (lam x0 x1)In (ap x2 1) (x1 (ap x2 0))
Theorem 6789e..ap1_setprod : ∀ x0 x1 x2 . In x2 (setprod x0 x1)In (ap x2 1) x1 (proof)
Known f1e40..tuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (lam x0 x1)lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Theorem c1504..tuple_setprod_eta : ∀ x0 x1 x2 . In x2 (setprod x0 x1)lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2 (proof)
Known 4322e..setexp_I : ∀ x0 x1 x2 . In x2 (Pi x0 (λ x3 . x1))In x2 (setexp x1 x0)
Known 25543..lam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . In x3 x0In (x2 x3) (x1 x3))In (lam x0 x2) (Pi x0 x1)
Theorem 3152e..lam_setexp : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . In x3 x0In (x2 x3) x1)In (lam x0 x2) (setexp x1 x0) (proof)
Known 31c25..ap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . In x2 (Pi x0 x1)In x3 x0In (ap x2 x3) (x1 x3)
Known 4bf71..setexp_E : ∀ x0 x1 x2 . In x2 (setexp x1 x0)In x2 (Pi x0 (λ x3 . x1))
Theorem bc2f0..ap_setexp : ∀ x0 x1 x2 . In x2 (setexp x1 x0)∀ x3 . In x3 x0In (ap x2 x3) x1 (proof)
Known 3c3a9..setexp_def : setexp = λ x1 x2 . Pi x2 (λ x3 . x1)
Known 552ff..Pi_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Pi x0 x1)∀ x3 . In x3 (Pi x0 x1)(∀ x4 . In x4 x0ap x2 x4 = ap x3 x4)x2 = x3
Theorem eead0..setexp_ext : ∀ x0 x1 x2 . In x2 (setexp x1 x0)∀ x3 . In x3 (setexp x1 x0)(∀ x4 . In x4 x0ap x2 x4 = ap x3 x4)x2 = x3 (proof)
Known eb933..Pi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Pi x0 x1)lam x0 (ap x2) = x2
Theorem 09a68..setexp_eta : ∀ x0 x1 x2 . In x2 (setexp x1 x0)lam x0 (ap x2) = x2 (proof)
Known a6e5c..mul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1)
Known 08405..nat_0 : nat_p 0
Known fad70..mul_nat_0R : ∀ x0 . mul_nat x0 0 = 0
Known 02169..add_nat_0R : ∀ x0 . add_nat x0 0 = x0
Theorem 9b388..mul_nat_1R : ∀ x0 . mul_nat x0 1 = x0 (proof)
Known d6c64..mul_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat x0 x1 = mul_nat x1 x0
Known c7c31..nat_1 : nat_p 1
Theorem e6942..mul_nat_1L : ∀ x0 . nat_p x0mul_nat 1 x0 = x0 (proof)
Param 69aae..exp_nat : ιιι
Known fed08..nat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known 94de7..exp_nat_0 : ∀ x0 . 69aae.. x0 0 = 1
Known f4890..exp_nat_S : ∀ x0 x1 . nat_p x169aae.. x0 (ordsucc x1) = mul_nat x0 (69aae.. x0 x1)
Known 4f633..mul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Theorem 2f247..exp_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (69aae.. x0 x1) (proof)
Theorem 37c59..exp_nat_1 : ∀ x0 . 69aae.. x0 1 = x0 (proof)
Theorem 8271b..exp_nat_2_mul_nat : ∀ x0 . 69aae.. x0 2 = mul_nat x0 x0 (proof)
Known 37124..orE : ∀ x0 x1 : ο . or x0 x1∀ x2 : ο . (x0x2)(x1x2)x2
Known c7246..nat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1)
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Theorem 5f4e5..nat_inv_impred : ∀ x0 . nat_p x0∀ x1 : ι → ο . x1 0(∀ x2 . nat_p x2x0 = ordsucc x2x1 (ordsucc x2))x1 x0 (proof)
Known FalseEFalseE : False∀ x0 : ο . x0
Known 2901c..EmptyE : ∀ x0 . In x0 0False
Theorem bce4a..pos_nat_inv_impred : ∀ x0 . nat_p x0∀ x1 . In x1 x0∀ x2 : ι → ο . (∀ x3 . nat_p x3x0 = ordsucc x3x2 (ordsucc x3))x2 x0 (proof)
Known 3e9a7..ordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (In x0 x1) (Subq x1 x0)
Known 80da5..nat_trans : ∀ x0 . nat_p x0∀ x1 . In x1 x0Subq x1 x0
Known ba2b3..add_nat_ltL : ∀ x0 . nat_p x0∀ x1 . In x1 x0∀ x2 . nat_p x2In (add_nat x1 x2) (add_nat x0 x2)
Known 56073..add_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Known 6696a..Subq_ref : ∀ x0 . Subq x0 x0
Known b3824..set_ext : ∀ x0 x1 . Subq x0 x1Subq x1 x0x0 = x1
Known 08dfe..nat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Theorem 3d240..add_nat_leL : ∀ x0 x1 x2 . nat_p x0nat_p x1Subq x0 x1nat_p x2Subq (add_nat x0 x2) (add_nat x1 x2) (proof)
Known 3fe1c..add_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0
Theorem 6f7bf..add_nat_leR : ∀ x0 x1 x2 . nat_p x0nat_p x1nat_p x2Subq x1 x2Subq (add_nat x0 x1) (add_nat x0 x2) (proof)
Known 0dc7e..add_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Known b41a2..Subq_Empty : ∀ x0 . Subq 0 x0
Theorem 791c2..add_nat_leL_2 : ∀ x0 x1 . nat_p x0nat_p x1Subq x0 (add_nat x1 x0) (proof)
Theorem 10d71..add_nat_leR_2 : ∀ x0 x1 . nat_p x0nat_p x1Subq x0 (add_nat x0 x1) (proof)
Known 1cf88..ordinal_TransSet_b : ∀ x0 . ordinal x0∀ x1 . In x1 x0∀ x2 . In x2 x1In x2 x0
Known 428f7..add_nat_ltR : ∀ x0 . nat_p x0∀ x1 . In x1 x0∀ x2 . nat_p x2In (add_nat x2 x1) (add_nat x2 x0)
Known b0a90..nat_p_trans : ∀ x0 . nat_p x0∀ x1 . In x1 x0nat_p x1
Known 21479..nat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem d3280..mul_nat_ltL : ∀ x0 . nat_p x0∀ x1 . In x1 x0∀ x2 . nat_p x2In (mul_nat x1 (ordsucc x2)) (mul_nat x0 (ordsucc x2)) (proof)
Theorem b01a1..mul_nat_ltR : ∀ x0 . nat_p x0∀ x1 . In x1 x0∀ x2 . nat_p x2In (mul_nat (ordsucc x2) x1) (mul_nat (ordsucc x2) x0) (proof)
Known 2ad64..Subq_tra : ∀ x0 x1 x2 . Subq x0 x1Subq x1 x2Subq x0 x2
Theorem e93e8..mul_nat_leL : ∀ x0 x1 . nat_p x0nat_p x1Subq x0 x1∀ x2 . nat_p x2Subq (mul_nat x0 x2) (mul_nat x1 x2) (proof)
Theorem 4d5cb..mul_nat_leR : ∀ x0 x1 x2 . nat_p x0nat_p x1nat_p x2Subq x1 x2Subq (mul_nat x0 x1) (mul_nat x0 x2) (proof)
Known 61737..add_nat_mem_impred : ∀ x0 x1 . nat_p x1∀ x2 . In x2 (add_nat x0 x1)∀ x3 : ο . (In x2 x0x3)(∀ x4 . In x4 x1x2 = add_nat x0 x4x3)x3
Known 7bd16..nat_0_in_ordsucc : ∀ x0 . nat_p x0In 0 (ordsucc x0)
Known 0e99e..mul_nat_0L : ∀ x0 . nat_p x0mul_nat 0 x0 = 0
Known 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1
Known c8db6..mul_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat (ordsucc x0) x1 = add_nat (mul_nat x0 x1) x1
Known 2a3a3..In_irref_b : ∀ x0 . In x0 x0False
Known 367e6..SubqE : ∀ x0 x1 . Subq x0 x1∀ x2 . In x2 x0In x2 x1
Known 840d1..nat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . In x1 x0In (ordsucc x1) (ordsucc x0)
Known 47f74..add_nat_asso : ∀ x0 x1 . nat_p x1∀ x2 . nat_p x2add_nat (add_nat x0 x1) x2 = add_nat x0 (add_nat x1 x2)
Known 002a9..add_nat_cancelR : ∀ x0 x1 x2 . nat_p x2add_nat x0 x2 = add_nat x1 x2x0 = x1
Known cf025..ordsuccI2 : ∀ x0 . In x0 (ordsucc x0)
Known 8cf6a..nat_ordsucc_trans : ∀ x0 . nat_p x0∀ x1 . In x1 (ordsucc x0)Subq x1 x0
Theorem 1c648..quot_rem_nat_impred : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 . In x2 (mul_nat x0 x1)∀ x3 : ο . (∀ x4 . In x4 x0∀ x5 . In x5 x1x2 = add_nat x4 (mul_nat x5 x0)(∀ x6 . In x6 x0∀ x7 . In x7 x1x2 = add_nat x6 (mul_nat x7 x0)and (x6 = x4) (x7 = x5))x3)x3 (proof)
Known b4776..ordsuccE_impred : ∀ x0 x1 . In x1 (ordsucc x0)∀ x2 : ο . (In x1 x0x2)(x1 = x0x2)x2
Theorem 5fcca..add_mul_nat_lt : ∀ x0 x1 . nat_p x0nat_p x1∀ x2 . In x2 x0∀ x3 . In x3 x1In (add_nat x2 (mul_nat x3 x0)) (mul_nat x0 x1) (proof)
Known f2c5c..equipI : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2equip x0 x1
Known e5c63..bijI : ∀ x0 x1 . ∀ x2 : ι → ι . inj x0 x1 x2(∀ x3 . In x3 x1∀ x4 : ο . (∀ x5 . and (In x5 x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known 1796e..injI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . In x3 x0In (x2 x3) x1)(∀ x3 . In x3 x0∀ x4 . In x4 x0x2 x3 = x2 x4x3 = x4)inj x0 x1 x2
Known e8081..tuple_2_setprod : ∀ x0 x1 x2 . In x2 x0∀ x3 . In x3 x1In (lam 2 (λ x4 . If_i (x4 = 0) x2 x3)) (setprod x0 x1)
Known 08193..tuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known 66870..tuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Theorem ff088..equip_setprod_mul_nat : ∀ x0 x1 . nat_p x0nat_p x1equip (setprod x0 x1) (mul_nat x0 x1) (proof)
Known c9b7c..equipE_impred : ∀ x0 x1 . equip x0 x1∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Known 80a11..bijE_impred : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . (inj x0 x1 x2(∀ x4 . In x4 x1∀ x5 : ο . (∀ x6 . and (In x6 x0) (x2 x6 = x4)x5)x5)x3)x3
Known e6daf..injE_impred : ∀ x0 x1 . ∀ x2 : ι → ι . inj x0 x1 x2∀ x3 : ο . ((∀ x4 . In x4 x0In (x2 x4) x1)(∀ x4 . In x4 x0∀ x5 . In x5 x0x2 x4 = x2 x5x4 = x5)x3)x3
Known abe40..tuple_2_inj_impred : ∀ x0 x1 x2 x3 . lam 2 (λ x5 . If_i (x5 = 0) x0 x1) = lam 2 (λ x5 . If_i (x5 = 0) x2 x3)∀ x4 : ο . (x0 = x2x1 = x3x4)x4
Theorem a3135..equip_setprod_cong : ∀ x0 x1 x2 x3 . equip x0 x2equip x1 x3equip (setprod x0 x1) (setprod x2 x3) (proof)
Known 30edc..equip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Theorem 912b9..equip_setprod_mul_nat_2 : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 x3 . equip x2 x0equip x3 x1equip (setprod x2 x3) (mul_nat x0 x1) (proof)
Known 4c66a..setexp_2_eq : ∀ x0 . setprod x0 x0 = setexp x0 2
Theorem 6d8a0..equip_setexp_2 : ∀ x0 . nat_p x0∀ x1 . equip x1 x0equip (setexp x1 2) (mul_nat x0 x0) (proof)
Theorem 857de..equip_setexp_2b : ∀ x0 . nat_p x0∀ x1 . equip x1 x0equip (setexp x1 2) (69aae.. x0 2) (proof)
Known e9b50..ordsuccI1b : ∀ x0 x1 . In x1 x0In x1 (ordsucc x0)
Known b515a..beta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 x0ap (lam x0 x1) x2 = x1 x2
Known 81513..If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known 8106d..notI : ∀ x0 : ο . (x0False)not x0
Known 0d2f9..If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem d5467..equip_setexp_ordsucc_setprod : ∀ x0 x1 . equip (setexp x1 (ordsucc x0)) (setprod x1 (setexp x1 x0)) (proof)
Known 36841..nat_2 : nat_p 2
Theorem 21472..equip_setexp_3 : ∀ x0 . nat_p x0∀ x1 . equip x1 x0equip (setexp x1 3) (69aae.. x0 3) (proof)

previous assets