Search for blocks/addresses/...
Proofgold Address
address
PUZqCz393X1S2aQ1EyU4abmGPGrKN6cCsF5
total
0
mg
-
conjpub
-
current assets
2b4c8..
/
66b44..
bday:
31261
doc published by
Pr4zB..
Definition
Church17_lt6
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
x0
Theorem
f1dd0..
:
Church17_lt6
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
)
(proof)
Theorem
d0a47..
:
Church17_lt6
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x1
)
(proof)
Theorem
324b3..
:
Church17_lt6
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x2
)
(proof)
Theorem
42663..
:
Church17_lt6
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x3
)
(proof)
Theorem
52a31..
:
Church17_lt6
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x4
)
(proof)
Theorem
0b832..
:
Church17_lt6
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x5
)
(proof)
Param
u6
:
ι
Param
u17_to_Church17
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Param
u1
:
ι
Param
u2
:
ι
Param
u3
:
ι
Param
u4
:
ι
Param
u5
:
ι
Known
cases_6
cases_6
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
x0
Known
c5926..
:
u17_to_Church17
0
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x1
Known
b0ce1..
:
u17_to_Church17
u1
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x2
Known
e8ec5..
:
u17_to_Church17
u2
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x3
Known
1ef08..
:
u17_to_Church17
u3
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x4
Known
05513..
:
u17_to_Church17
u4
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x5
Known
22977..
:
u17_to_Church17
u5
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x6
Theorem
8a73e..
:
∀ x0 .
x0
∈
u6
⟶
Church17_lt6
(
u17_to_Church17
x0
)
(proof)
Param
Church17_p
:
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
e70c8..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
)
Known
1b7f9..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x1
)
Known
25b64..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x2
)
Known
9e7eb..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x3
)
Known
51a81..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x4
)
Known
e224e..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x5
)
Theorem
577f2..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt6
x0
⟶
Church17_p
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
u17
:
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
nat_17
nat_17
:
nat_p
u17
Known
b3205..
:
u6
∈
u17
Theorem
ba44d..
:
u6
⊆
u17
(proof)
Definition
TwoRamseyGraph_3_6_Church17
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
)
Definition
TwoRamseyGraph_3_6_17
:=
λ x0 x1 .
x0
∈
u17
⟶
x1
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
(
u17_to_Church17
x0
)
(
u17_to_Church17
x1
)
=
λ x3 x4 .
x3
Param
u7
:
ι
Param
u8
:
ι
Param
u9
:
ι
Param
u10
:
ι
Param
u11
:
ι
Param
u12
:
ι
Param
u13
:
ι
Param
u14
:
ι
Param
u15
:
ι
Param
u16
:
ι
Known
66f20..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
768c1..
:
(
(
λ x1 x2 .
x2
)
=
λ x1 x2 .
x1
)
⟶
∀ x0 : ο .
x0
Known
0e32a..
:
u17_to_Church17
u6
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x7
Known
48ba7..
:
u17_to_Church17
u8
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x9
Known
a3fb1..
:
u17_to_Church17
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x10
Known
a87a3..
:
u17_to_Church17
u11
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x12
Known
a52d8..
:
u17_to_Church17
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x13
Known
0975c..
:
u17_to_Church17
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x14
Known
cf897..
:
u17_to_Church17
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x15
Known
480e6..
:
u17_to_Church17
u16
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x17
Known
b0f83..
:
u17_to_Church17
u7
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x8
Known
d7087..
:
u17_to_Church17
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x11
Known
c424d..
:
u17_to_Church17
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x16
Theorem
d0d1e..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 .
x1
∈
u17
⟶
(
TwoRamseyGraph_3_6_Church17
(
u17_to_Church17
x0
)
(
u17_to_Church17
x1
)
=
λ x3 x4 .
x3
)
⟶
TwoRamseyGraph_3_6_17
x0
x1
(proof)
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
d03c6..
:
∀ x0 .
atleastp
u4
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x1
)
⟶
x1
Known
1ce13..
:
∀ x0 x1 x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_lt6
x0
⟶
Church17_lt6
x1
⟶
Church17_lt6
x2
⟶
Church17_lt6
x3
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x2
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x0
x3
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
x2
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x1
x3
=
λ x5 x6 .
x6
)
⟶
(
TwoRamseyGraph_3_6_Church17
x2
x3
=
λ x5 x6 .
x6
)
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
d8d63..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
or
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x3
)
(
TwoRamseyGraph_3_6_Church17
x0
x1
=
λ x3 x4 .
x4
)
Theorem
98707..
:
∀ x0 .
x0
⊆
u6
⟶
atleastp
u4
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
(proof)
previous assets