Search for blocks/addresses/...

Proofgold Address

address
PUb8bzz123aDd2Q2aYSCkPttY6WWesZHpxH
total
0
mg
-
conjpub
-
current assets
30f16../51121.. bday: 4959 doc published by Pr6Pc..
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Param explicit_Field_minusexplicit_Field_minus : ιιι(ιιι) → (ιιι) → ιι
Param ReplSep2ReplSep2 : ι(ιι) → (ιιο) → CT2 ι
Param TrueTrue : ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known 33222.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9)(∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x3 x8 x7)x1x0(∀ x7 . x7x0x3 x1 x7 = x7)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8x0)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x4 x8 x7)x2x0(x2 = x1∀ x7 : ο . x7)(∀ x7 . x7x0x4 x2 x7 = x7)explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x7 . x7x0∀ x8 . x8x0x6 x7 x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 x7 x8 = x6 x10 x12)x11)x11)) = x7)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 x7 x8 = x6 x12 x14)x13)x13))) x10)) = x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (∀ x9 : ο . (∀ x10 . and (x10x0) (x7 = x6 x8 x10)x9)x9))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) x8))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11)) = prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10)) = prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))x7 = x8)x6 x1 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6x6 x2 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (x3 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) = x6 x10 x12)x11)x11)) = x3 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (x3 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (x3 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) = x6 x12 x14)x13)x13))) x10)) = x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))) x14)))) (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) x14))) (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))))) = x6 x10 x12)x11)x11)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x14 x16)x15)x15))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x14 x16)x15)x15))) x12))) (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))))) = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x16 x18)x17)x17))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x18 x20)x19)x19))) x16)))) (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x18 x20)x19)x19))) x16))) (prim0 (λ x16 . and (x16x0) (∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x16 x18)x17)x17))))) = x6 x12 x14)x13)x13))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))) = x6 x2 x1)x8)x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12))))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)))))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10))))))
Known explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x3 x6 x7 = x3 x7 x6)x1x0(∀ x6 . x6x0x3 x1 x6 = x6)(∀ x6 . x6x0∀ x7 : ο . (∀ x8 . and (x8x0) (x3 x6 x8 = x1)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7x0)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8)(∀ x6 . x6x0∀ x7 . x7x0x4 x6 x7 = x4 x7 x6)x2x0(x2 = x1∀ x6 : ο . x6)(∀ x6 . x6x0x4 x2 x6 = x6)(∀ x6 . x6x0(x6 = x1∀ x7 : ο . x7)∀ x7 : ο . (∀ x8 . and (x8x0) (x4 x6 x8 = x2)x7)x7)(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8))x5)explicit_Field x0 x1 x2 x3 x4x5
Known explicit_Field_minus_zeroexplicit_Field_minus_zero : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1
Theorem 95cf4.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . x7x0∀ x8 . x8x0x6 x7 x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x6 x7 x8 = x6 x10 x13)x12)x12)x11)x11) = x7)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . ∀ x11 : ο . (x10x0x6 x7 x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x6 x7 x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . ∀ x9 : ο . (x8x0(∀ x10 : ο . (∀ x11 . and (x11x0) (x7 = x6 x8 x11)x10)x10)x9)x9)x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . ∀ x9 : ο . (x8x0x7 = x6 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) x8x9)x9)x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x10 x13)x12)x12)x11)x11) = prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x10 x13)x12)x12)x11)x11)prim0 (λ x10 . ∀ x11 : ο . (x10x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)x7 = x8)x6 x1 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6x6 x2 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . ∀ x16 : ο . (x15x0(∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x15 x18)x17)x17)x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15x0(∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x15 x18)x17)x17)x16)x16))) (x3 (prim0 (λ x15 . ∀ x16 : ο . (x15x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16))) = x6 x10 x13)x12)x12)x11)x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x10 x13)x12)x12)x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x10 x13)x12)x12)x11)x11)))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . ∀ x11 : ο . (x10x0x6 (x3 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14))) (x3 (prim0 (λ x13 . ∀ x14 : ο . (x13x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x6 (x3 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x18 x21)x20)x20)x19)x19))) (x3 (prim0 (λ x18 . ∀ x19 : ο . (x18x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21x0(∀ x23 : ο . (∀ x24 . and (x24x0) (x7 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21x0(∀ x23 : ο . (∀ x24 . and (x24x0) (x8 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19))) = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (x10x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x9 x12)x11)x11)x10)x10))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15x0(∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x15 x18)x17)x17)x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15x0(∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x15 x18)x17)x17)x16)x16))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16))))) (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15x0(∀ x17 : ο . (∀ x18 . and (x18x0) (x7 = x6 x15 x18)x17)x17)x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16))) (x4 (prim0 (λ x15 . ∀ x16 : ο . (x15x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (x15x0(∀ x17 : ο . (∀ x18 . and (x18x0) (x8 = x6 x15 x18)x17)x17)x16)x16)))) = x6 x10 x13)x12)x12)x11)x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x10 x13)x12)x12)x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x10 x13)x12)x12)x11)x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . ∀ x11 : ο . (x10x0x6 (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14))))) (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14))) (x4 (prim0 (λ x13 . ∀ x14 : ο . (x13x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14)))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x6 (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x18 x21)x20)x20)x19)x19))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21x0(∀ x23 : ο . (∀ x24 . and (x24x0) (x7 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21x0(∀ x23 : ο . (∀ x24 . and (x24x0) (x8 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19))))) (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21x0(∀ x23 : ο . (∀ x24 . and (x24x0) (x8 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19))) (x4 (prim0 (λ x18 . ∀ x19 : ο . (x18x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (x21x0(∀ x23 : ο . (∀ x24 . and (x24x0) (x7 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (x18x0(∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x18 x21)x20)x20)x19)x19)))) = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x7 = x6 x10 x13)x12)x12)x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (x10x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (x13x0(∀ x15 : ο . (∀ x16 . and (x16x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (x10x0(∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x10 x13)x12)x12)x11)x11))))explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x11 x14)x13)x13)x12)x12)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x11 x14)x13)x13)x12)x12)))) = x6 x2 x1)x8)x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) = x6 x11 x14)x13)x13)x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0(∀ x13 : ο . (∀ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (x16x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (x16x0(∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (x11x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (x14x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (x17x0(∀ x19 : ο . (∀ x20 . and (x20x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (x14x0(∀ x16 : ο . (∀ x17 . and (x17x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (x19x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (x22x0(∀ x24 : ο . (∀ x25 . and (x25x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (x19x0(∀ x21 : ο . (∀ x22 . and (x22x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (x9x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (x9x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (x12x0(∀ x14 : ο . (∀ x15 . and (x15x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (x9x0(∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x9 x12)x11)x11)x10)x10))))) (proof)

previous assets