current assets |
---|
c7a2a../6b8ec.. bday: 35837 doc published by Pr4zB..Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οDefinition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param setminussetminus : ι → ι → ιParam SingSing : ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ x0 x3 x4 ⟶ x5) ⟶ x5Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ not (x0 x3 x5) ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 836ee.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (6648a.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ x0 x5 x7 ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition 80211.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (836ee.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ x0 x6 x8 ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition df271.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (6648a.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition 2158f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (df271.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition f444d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (2158f.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ not (x0 x8 x9) ⟶ x10) ⟶ x10Definition 50d07.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (836ee.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 7cafd.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (50d07.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ not (x0 x8 x9) ⟶ x10) ⟶ x10Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x3 ⟶ ∀ x6 : ο . x6) ⟶ (x1 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x2 = x4 ⟶ ∀ x6 : ο . x6) ⟶ (x3 = x4 ⟶ ∀ x6 : ο . x6) ⟶ not (x0 x1 x2) ⟶ not (x0 x1 x3) ⟶ not (x0 x2 x3) ⟶ not (x0 x1 x4) ⟶ not (x0 x2 x4) ⟶ not (x0 x3 x4) ⟶ x5) ⟶ x5Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition f8709.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition e8ae3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition fa72d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (e8ae3.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 3c407.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fa72d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ not (x0 x8 x9) ⟶ x10) ⟶ x10Definition 16c0f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f8709.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ not (x0 x3 x7) ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition cc0ce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (16c0f.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 0768d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (cc0ce.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ not (x0 x3 x6) ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 796c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition d7cce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 58722.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d7cce.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 36d58.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition af16d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (36d58.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 093ca.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (af16d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 21422.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition f0d5b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (21422.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition f51b8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (f0d5b.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 17819.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (80211.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 8c70b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (80211.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 8acce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d7cce.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 3819d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 8b97c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (3819d.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 2bf4d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (8b97c.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition a3794.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (af16d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 02f3e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ x0 x2 x7 ⟶ x0 x3 x7 ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition a5c5d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (02f3e.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition b0749.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (a5c5d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ not (x0 x2 x5) ⟶ not (x0 x3 x5) ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition fba9e.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition a5b26.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (fba9e.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ x0 x5 x7 ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition cb670.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (a5b26.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition ee649.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (cb670.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition d2827.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (36d58.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 915dd.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d2827.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition aa8e6.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (df271.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ x0 x1 x8 ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition a7e88.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (aa8e6.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 22bb5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (f0d5b.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ x0 x1 x9 ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ x0 x6 x9 ⟶ not (x0 x7 x9) ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 3109c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ not (x0 x3 x7) ⟶ x0 x4 x7 ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 83424.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (3109c.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 27706.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (83424.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition a9907.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (cb670.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 659a1.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ not (x0 x4 x6) ⟶ x0 x5 x6 ⟶ x7) ⟶ x7Definition ba9c9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (659a1.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ x0 x5 x7 ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition 70101.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (ba9c9.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition ee178.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (70101.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 824ef.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (70101.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 8c395.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (fba9e.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ x0 x3 x7 ⟶ not (x0 x4 x7) ⟶ not (x0 x5 x7) ⟶ not (x0 x6 x7) ⟶ x8) ⟶ x8Definition c0878.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (8c395.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 72d65.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (c0878.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 7f9b0.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (3109c.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ x0 x3 x8 ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 446f4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (7f9b0.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 14be0.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d2827.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition d92ce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fa72d.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ x0 x2 x9 ⟶ not (x0 x3 x9) ⟶ not (x0 x4 x9) ⟶ x0 x5 x9 ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 2b028.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4 ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x2 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ not (x0 x1 x5) ⟶ x0 x2 x5 ⟶ x0 x3 x5 ⟶ x0 x4 x5 ⟶ x6) ⟶ x6Definition 9ab39.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5 ⟶ (x1 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x2 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x3 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x4 = x6 ⟶ ∀ x8 : ο . x8) ⟶ (x5 = x6 ⟶ ∀ x8 : ο . x8) ⟶ not (x0 x1 x6) ⟶ x0 x2 x6 ⟶ x0 x3 x6 ⟶ x0 x4 x6 ⟶ not (x0 x5 x6) ⟶ x7) ⟶ x7Definition 1c500.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (9ab39.. x0 x1 x2 x3 x4 x5 x6 ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ x0 x1 x7 ⟶ not (x0 x2 x7) ⟶ not (x0 x3 x7) ⟶ not (x0 x4 x7) ⟶ x0 x5 x7 ⟶ x0 x6 x7 ⟶ x8) ⟶ x8Definition 25f2f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (1c500.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ not (x0 x2 x8) ⟶ not (x0 x3 x8) ⟶ x0 x4 x8 ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition e5063.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (25f2f.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ x0 x3 x9 ⟶ not (x0 x4 x9) ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition 81fa4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (836ee.. x0 x1 x2 x3 x4 x5 x6 x7 ⟶ (x1 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x2 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x3 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x4 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x8 ⟶ ∀ x10 : ο . x10) ⟶ (x7 = x8 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x1 x8) ⟶ x0 x2 x8 ⟶ not (x0 x3 x8) ⟶ not (x0 x4 x8) ⟶ not (x0 x5 x8) ⟶ not (x0 x6 x8) ⟶ not (x0 x7 x8) ⟶ x9) ⟶ x9Definition 2bb2a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (81fa4.. x0 x1 x2 x3 x4 x5 x6 x7 x8 ⟶ (x1 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x2 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x3 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x4 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x5 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x6 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x7 = x9 ⟶ ∀ x11 : ο . x11) ⟶ (x8 = x9 ⟶ ∀ x11 : ο . x11) ⟶ not (x0 x1 x9) ⟶ not (x0 x2 x9) ⟶ not (x0 x3 x9) ⟶ x0 x4 x9 ⟶ not (x0 x5 x9) ⟶ not (x0 x6 x9) ⟶ x0 x7 x9 ⟶ x0 x8 x9 ⟶ x10) ⟶ x10Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusEsetminusE : ∀ x0 x1 x2 . x2 ∈ setminus x0 x1 ⟶ and (x2 ∈ x0) (nIn x2 x1)Known 42750.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 80211.. x2 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ ∀ x12 : ο . (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ not (x2 x11 x3) ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (x2 x4 x3 ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ x2 x8 x3 ⟶ not (x2 x9 x3) ⟶ not (x2 x10 x3) ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ x2 x6 x3 ⟶ not (x2 x7 x3) ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ not (x2 x5 x3) ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ (not (x2 x4 x3) ⟶ x2 x5 x3 ⟶ not (x2 x6 x3) ⟶ x2 x7 x3 ⟶ not (x2 x8 x3) ⟶ not (x2 x9 x3) ⟶ x2 x10 x3 ⟶ x2 x11 x3 ⟶ x12) ⟶ x12Known d4057.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x7 x6 x5 x4 x3Known de43b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x3 x5 x4 x7 x6Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known a246a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ 6648a.. x1 x2 x3 x4 x5 x6 x7 ⟶ 6648a.. x1 x2 x6 x4 x7 x3 x5Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Known SingISingI : ∀ x0 . x0 ∈ Sing x0Theorem e22a9.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 80211.. x2 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ ∀ x12 : ο . (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ f444d.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 7cafd.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 3c407.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 0768d.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 58722.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 093ca.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ f51b8.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 17819.. x2 x13 x14 x15 x16 x17 x18 x19 x20 x3 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 8c70b.. x2 x13 x14 x15 x16 x17 x18 x19 x20 x3 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 8acce.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 2bf4d.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ a3794.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ b0749.. x2 x13 x14 x15 x16 x17 x18 x3 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ee649.. x2 x13 x14 x15 x16 x3 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 915dd.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ a7e88.. x2 x13 x14 x15 x16 x3 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 22bb5.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 27706.. x2 x13 x14 x15 x16 x3 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ a9907.. x2 x13 x14 x15 x16 x3 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ee178.. x2 x13 x14 x15 x16 x17 x18 x19 x3 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 824ef.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 72d65.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 446f4.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 14be0.. x2 x13 x14 x3 x15 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ d92ce.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ e5063.. x2 x13 x14 x15 x16 x17 x3 x18 x19 x20 ⟶ x12) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ∀ x15 . x15 ∈ x0 ⟶ ∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ 2bb2a.. x2 x13 x14 x15 x3 x16 x17 x18 x19 x20 ⟶ x12) ⟶ x12 (proof)
|
|