Search for blocks/addresses/...

Proofgold Address

address
PUbqvmMnaokrhWSWfuKGN6fB8e5m1t4u9N3
total
0
mg
-
conjpub
-
current assets
29ae1../c69c2.. bday: 22292 doc published by Pr4zB..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)) (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Param ordsuccordsucc : ιι
Param setminussetminus : ιιι
Param UPairUPair : ιιι
Param SingSing : ιι
Known 9c223..equip_ordsucc_remove1 : ∀ x0 x1 x2 . x2x0equip x0 (ordsucc x1)equip (setminus x0 (Sing x2)) x1
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Param binunionbinunion : ιιι
Known setminus_binunionsetminus_binunion : ∀ x0 x1 x2 . setminus x0 (binunion x1 x2) = setminus (setminus x0 x1) x2
Known cbaf1.. : ∀ x0 x1 . UPair x0 x1 = binunion (Sing x0) (Sing x1)
Theorem 185e6.. : ∀ x0 x1 x2 . x2x0∀ x3 . x3x0(x2 = x3∀ x4 : ο . x4)equip x0 (ordsucc (ordsucc x1))equip (setminus x0 (UPair x2 x3)) x1 (proof)
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Known 1aece.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4
Theorem 8698a.. : ∀ x0 x1 x2 x3 . ∀ x4 : ι → ο . x4 x0x4 x1x4 x2x4 x3∀ x5 . x5SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3x4 x5 (proof)
Known 3cea6.. : ∀ x0 x1 x2 x3 x4 x5 . x5SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4∀ x6 : ι → ο . x6 x0x6 x1x6 x2x6 x3x6 x4x6 x5
Theorem 9b26d.. : ∀ x0 x1 x2 x3 x4 . ∀ x5 : ι → ο . x5 x0x5 x1x5 x2x5 x3x5 x4∀ x6 . x6SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4x5 x6 (proof)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem 13005.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)atleastp x0 (prim5 x0 x1) (proof)
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem d2050.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)equip x0 (prim5 x0 x1) (proof)
Param omegaomega : ι
Definition finitefinite := λ x0 . ∀ x1 : ο . (∀ x2 . and (x2omega) (equip x0 x2)x1)x1
Definition u1 := 1
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Theorem 28148..Sing_finite : ∀ x0 . finite (Sing x0) (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known SingISingI : ∀ x0 . x0Sing x0
Known 6cd03.. : ∀ x0 x1 . x1x0Sing x1x0
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Definition u2 := ordsucc u1
Known nat_2nat_2 : nat_p 2
Known ced33.. : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)equip (UPair x0 x1) u2
Theorem 92c81.. : ∀ x0 x1 . finite (UPair x0 x1) (proof)
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Known PigeonHole_nat_bijPigeonHole_nat_bij : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)bij x0 x0 x1
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Theorem 1b508.. : ∀ x0 x1 . finite x0atleastp x1 x0x0x1x0 = x1 (proof)
Known inj_compinj_comp : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι . inj x0 x1 x3inj x1 x2 x4inj x0 x2 (λ x5 . x4 (x3 x5))
Theorem 77ee8.. : ∀ x0 x1 x2 . ∀ x3 : ι → ι . nat_p x0equip x1 x0equip x2 x0inj x1 x2 x3bij x1 x2 x3 (proof)
Definition u3 := ordsucc u2
Param SepSep : ι(ιο) → ι
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Known tuple_3_0_eqtuple_3_0_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 0 = x0
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Known In_0_3In_0_3 : 03
Known In_1_3In_1_3 : 13
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known tuple_3_1_eqtuple_3_1_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 1 = x1
Known In_2_3In_2_3 : 23
Known neq_0_2neq_0_2 : 0 = 2∀ x0 : ο . x0
Known tuple_3_2_eqtuple_3_2_eq : ∀ x0 x1 x2 . ap (lam 3 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) x1 x2))) 2 = x2
Known neq_1_2neq_1_2 : 1 = 2∀ x0 : ο . x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known eq_2_UPair01eq_2_UPair01 : 2 = UPair 0 1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known PowerEPowerE : ∀ x0 x1 . x1prim4 x0x1x0
Known In_0_1In_0_1 : 01
Known In_0_2In_0_2 : 02
Theorem 72ea6.. : bij u3 {x0 ∈ prim4 u3|equip x0 u2} (ap (lam 3 (λ x0 . If_i (x0 = 0) (UPair 0 u1) (If_i (x0 = 1) (UPair 0 u2) (UPair u1 u2))))) (proof)
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Param invinv : ι(ιι) → ιι
Known surj_rinvsurj_rinv : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)∀ x3 . x3x1and (inv x0 x2 x3x0) (x2 (inv x0 x2 x3) = x3)
Known bij_invbij_inv : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2bij x1 x0 (inv x0 x2)
Theorem da3b9.. : ∀ x0 . equip x0 u3equip {x1 ∈ prim4 x0|equip x1 u2} u3 (proof)
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Theorem 6a935.. : ∀ x0 x1 x2 . SetAdjoin (UPair x0 x1) x2SetAdjoin (UPair x0 x2) x1 (proof)
Theorem 166d0.. : ∀ x0 x1 x2 . SetAdjoin (UPair x0 x1) x2 = SetAdjoin (UPair x0 x2) x1 (proof)
Known binunion_assobinunion_asso : ∀ x0 x1 x2 . binunion x0 (binunion x1 x2) = binunion (binunion x0 x1) x2
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Theorem 50015.. : ∀ x0 x1 x2 x3 . SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3 = SetAdjoin (SetAdjoin (UPair x0 x1) x3) x2 (proof)
Theorem e488c.. : ∀ x0 x1 x2 x3 x4 . SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4 = SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x4) x2) x3 (proof)

previous assets