Search for blocks/addresses/...
Proofgold Address
address
PUbt6y67EhrNZBzdZmpDgv61R31ZMtPzafL
total
0
mg
-
conjpub
-
current assets
79bc8..
/
5aaa4..
bday:
28197
doc published by
Pr5Zc..
Param
SNo
SNo
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
nat_4
nat_4
:
nat_p
4
Theorem
48da5..
:
SNo
4
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
In_0_4
In_0_4
:
0
∈
4
Theorem
32437..
:
SNoLt
0
4
(proof)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Theorem
mul_SNo_com_4_inner_mid
mul_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
=
mul_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
(proof)
Param
int
int
:
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
88d93..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x1
x3
x4
)
)
⟶
(
∀ x3 x4 .
x0
x3
⟶
x0
x4
⟶
x0
(
x2
x3
x4
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x3
(
x1
x4
x5
)
=
x1
x4
(
x1
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
(
x1
x3
x4
)
x5
=
x1
x3
(
x1
x4
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
x3
(
x1
x4
x5
)
=
x1
(
x2
x3
x4
)
(
x2
x3
x5
)
)
⟶
(
∀ x3 x4 x5 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x2
(
x1
x3
x4
)
x5
=
x1
(
x2
x3
x5
)
(
x2
x4
x5
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
x0
x4
⟶
x3
x4
=
x2
x4
x4
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x0
x5
⟶
x0
(
x4
x5
)
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
(
x4
x5
)
=
x5
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
(
x4
x5
)
(
x1
x5
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x1
x5
(
x1
(
x4
x5
)
x6
)
=
x6
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
(
x4
x5
)
x6
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
(
x4
x6
)
=
x4
(
x2
x5
x6
)
)
⟶
(
∀ x5 x6 .
x0
x5
⟶
x0
x6
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
(
∀ x5 x6 x7 x8 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x2
(
x2
x5
x6
)
(
x2
x7
x8
)
=
x2
(
x2
x5
x7
)
(
x2
x6
x8
)
)
⟶
∀ x5 x6 x7 x8 x9 x10 x11 x12 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x2
(
x1
(
x3
x5
)
(
x1
(
x3
x6
)
(
x1
(
x3
x7
)
(
x3
x8
)
)
)
)
(
x1
(
x3
x9
)
(
x1
(
x3
x10
)
(
x1
(
x3
x11
)
(
x3
x12
)
)
)
)
=
x1
(
x3
(
x1
(
x2
x5
x10
)
(
x1
(
x2
x6
x9
)
(
x1
(
x2
x7
x12
)
(
x4
(
x2
x8
x11
)
)
)
)
)
)
(
x1
(
x3
(
x1
(
x2
x5
x11
)
(
x1
(
x4
(
x2
x6
x12
)
)
(
x1
(
x2
x7
x9
)
(
x2
x8
x10
)
)
)
)
)
(
x1
(
x3
(
x1
(
x2
x5
x12
)
(
x1
(
x2
x6
x11
)
(
x1
(
x4
(
x2
x7
x10
)
)
(
x2
x8
x9
)
)
)
)
)
(
x3
(
x1
(
x2
x5
x9
)
(
x1
(
x4
(
x2
x6
x10
)
)
(
x1
(
x4
(
x2
x7
x11
)
)
(
x4
(
x2
x8
x12
)
)
)
)
)
)
)
)
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Known
add_SNo_com_3_0_1
add_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x1
(
add_SNo
x0
x2
)
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Theorem
a3d6a..
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
∀ x3 .
x3
∈
int
⟶
∀ x4 .
x4
∈
int
⟶
∀ x5 .
x5
∈
int
⟶
x0
=
add_SNo
(
mul_SNo
x2
x2
)
(
add_SNo
(
mul_SNo
x3
x3
)
(
add_SNo
(
mul_SNo
x4
x4
)
(
mul_SNo
x5
x5
)
)
)
⟶
∀ x6 .
x6
∈
int
⟶
∀ x7 .
x7
∈
int
⟶
∀ x8 .
x8
∈
int
⟶
∀ x9 .
x9
∈
int
⟶
x1
=
add_SNo
(
mul_SNo
x6
x6
)
(
add_SNo
(
mul_SNo
x7
x7
)
(
add_SNo
(
mul_SNo
x8
x8
)
(
mul_SNo
x9
x9
)
)
)
⟶
mul_SNo
x0
x1
=
add_SNo
(
mul_SNo
(
add_SNo
(
mul_SNo
x2
x7
)
(
add_SNo
(
mul_SNo
x3
x6
)
(
add_SNo
(
mul_SNo
x4
x9
)
(
minus_SNo
(
mul_SNo
x5
x8
)
)
)
)
)
(
add_SNo
(
mul_SNo
x2
x7
)
(
add_SNo
(
mul_SNo
x3
x6
)
(
add_SNo
(
mul_SNo
x4
x9
)
(
minus_SNo
(
mul_SNo
x5
x8
)
)
)
)
)
)
(
add_SNo
(
mul_SNo
(
add_SNo
(
mul_SNo
x2
x8
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x3
x9
)
)
(
add_SNo
(
mul_SNo
x4
x6
)
(
mul_SNo
x5
x7
)
)
)
)
(
add_SNo
(
mul_SNo
x2
x8
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x3
x9
)
)
(
add_SNo
(
mul_SNo
x4
x6
)
(
mul_SNo
x5
x7
)
)
)
)
)
(
add_SNo
(
mul_SNo
(
add_SNo
(
mul_SNo
x2
x9
)
(
add_SNo
(
mul_SNo
x3
x8
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x4
x7
)
)
(
mul_SNo
x5
x6
)
)
)
)
(
add_SNo
(
mul_SNo
x2
x9
)
(
add_SNo
(
mul_SNo
x3
x8
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x4
x7
)
)
(
mul_SNo
x5
x6
)
)
)
)
)
(
mul_SNo
(
add_SNo
(
mul_SNo
x2
x6
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x3
x7
)
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x4
x8
)
)
(
minus_SNo
(
mul_SNo
x5
x9
)
)
)
)
)
(
add_SNo
(
mul_SNo
x2
x6
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x3
x7
)
)
(
add_SNo
(
minus_SNo
(
mul_SNo
x4
x8
)
)
(
minus_SNo
(
mul_SNo
x5
x9
)
)
)
)
)
)
)
)
(proof)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
c3da7..
:
mul_nat
2
2
=
4
Param
omega
omega
:
ι
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_2
nat_2
:
nat_p
2
Theorem
ecc46..
:
mul_SNo
2
2
=
4
(proof)
previous assets