Search for blocks/addresses/...

Proofgold Address

address
PUcffHE6wrwJ2AujpuqGq4ym7EQUhtgn1yC
total
0
mg
-
conjpub
-
current assets
6291b../4ed13.. bday: 4971 doc published by Pr6Pc..
Param ordinalordinal : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordinal_trichotomy_orordinal_trichotomy_or : ∀ x0 x1 . ordinal x0ordinal x1or (or (x0x1) (x0 = x1)) (x1x0)
Theorem ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2 (proof)
Param SNoSNo : ιο
Param SNoLtSNoLt : ιιο
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Param SNoLevSNoLev : ιι
Param binintersectbinintersect : ιιι
Param SNoEq_SNoEq_ : ιιιο
Param nInnIn : ιιο
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known SNoR_ISNoR_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x1SNoR x0
Theorem SNoLt_SNoL_or_SNoR_impredSNoLt_SNoL_or_SNoR_impred : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . x3SNoL x1x3SNoR x0x2)(x0SNoL x1x2)(x1SNoR x0x2)x2 (proof)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Theorem SNoL_or_SNoR_impredSNoL_or_SNoR_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (x0 = x1x2)(∀ x3 . x3SNoL x1x3SNoR x0x2)(x0SNoL x1x2)(x1SNoR x0x2)(∀ x3 . x3SNoR x1x3SNoL x0x2)(x0SNoR x1x2)(x1SNoL x0x2)x2 (proof)
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Theorem add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0 (proof)
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Theorem add_SNo_Lt1_canceladd_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2 (proof)
Theorem add_SNo_assoc_4add_SNo_assoc_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo (add_SNo x0 (add_SNo x1 x2)) x3 (proof)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Theorem add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2) (proof)
Theorem add_SNo_com_4_inner_flatadd_SNo_com_4_inner_flat : ∀ x0 x1 x2 x3 . SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo x0 (add_SNo x2 (add_SNo x1 x3)) (proof)
Theorem add_SNo_com_3b_1_2add_SNo_com_3b_1_2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo (add_SNo x0 x1) x2 = add_SNo (add_SNo x0 x2) x1 (proof)
Theorem add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3) (proof)
Theorem add_SNo_rotate_3_1add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1) (proof)
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Theorem add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1 (proof)
Theorem add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1 (proof)
Theorem add_SNo_minus_SNo_prop3add_SNo_minus_SNo_prop3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 (add_SNo x1 x2)) (add_SNo (minus_SNo x2) x3) = add_SNo x0 (add_SNo x1 x3) (proof)
Theorem add_SNo_minus_SNo_prop4add_SNo_minus_SNo_prop4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 (add_SNo x1 x2)) (add_SNo x3 (minus_SNo x2)) = add_SNo x0 (add_SNo x1 x3) (proof)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Theorem add_SNo_minus_SNo_prop5add_SNo_minus_SNo_prop5 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 (add_SNo x1 (minus_SNo x2))) (add_SNo x2 x3) = add_SNo x0 (add_SNo x1 x3) (proof)
Theorem add_SNo_minus_Lt1add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1) (proof)
Theorem add_SNo_minus_Lt2add_SNo_minus_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x2 (add_SNo x0 (minus_SNo x1))SNoLt (add_SNo x2 x1) x0 (proof)
Known add_SNo_Lt3add_SNo_Lt3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x0 x2SNoLt x1 x3SNoLt (add_SNo x0 x1) (add_SNo x2 x3)
Theorem add_SNo_Lt_subprop2add_SNo_Lt_subprop2 : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLt (add_SNo x0 x4) (add_SNo x2 x5)SNoLt (add_SNo x1 x5) (add_SNo x3 x4)SNoLt (add_SNo x0 x1) (add_SNo x2 x3) (proof)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Theorem add_SNo_Lt_subprop3aadd_SNo_Lt_subprop3a : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLt (add_SNo x0 x2) (add_SNo x3 x5)SNoLt (add_SNo x1 x5) x4SNoLt (add_SNo x0 (add_SNo x1 x2)) (add_SNo x3 x4) (proof)
Known SNo_0SNo_0 : SNo 0
Theorem add_SNo_Lt_subprop3badd_SNo_Lt_subprop3b : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLt (add_SNo x0 x5) (add_SNo x2 x4)SNoLt x1 (add_SNo x5 x3)SNoLt (add_SNo x0 x1) (add_SNo x2 (add_SNo x3 x4)) (proof)
Theorem add_SNo_Lt_subprop3cadd_SNo_Lt_subprop3c : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNoLt (add_SNo x0 x5) (add_SNo x6 x7)SNoLt (add_SNo x1 x7) x4SNoLt (add_SNo x6 x2) (add_SNo x3 x5)SNoLt (add_SNo x0 (add_SNo x1 x2)) (add_SNo x3 x4) (proof)
Theorem add_SNo_Lt_subprop3dadd_SNo_Lt_subprop3d : ∀ x0 x1 x2 x3 x4 x5 x6 x7 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNo x6SNo x7SNoLt (add_SNo x0 x5) (add_SNo x6 x4)SNoLt x1 (add_SNo x7 x3)SNoLt (add_SNo x6 x7) (add_SNo x2 x5)SNoLt (add_SNo x0 x1) (add_SNo x2 (add_SNo x3 x4)) (proof)
Param mul_SNomul_SNo : ιιι
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Param lamSigma : ι(ιι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param apap : ιιι
Param ordsuccordsucc : ιι
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Param If_iIf_i : οιιι
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known mul_SNo_eqmul_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1mul_SNo x0 x1 = SNoCut (binunion {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoL x1)} {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoR x0) (SNoR x1)}) (binunion {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoL x0) (SNoR x1)} {add_SNo (mul_SNo (ap x3 0) x1) (add_SNo (mul_SNo x0 (ap x3 1)) (minus_SNo (mul_SNo (ap x3 0) (ap x3 1))))|x3 ∈ setprod (SNoR x0) (SNoL x1)})
Theorem mul_SNo_eq_2mul_SNo_eq_2 : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (∀ x3 x4 . (∀ x5 . x5x3∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5SNoR x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5x4∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)(∀ x5 . x5SNoR x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)mul_SNo x0 x1 = SNoCut x3 x4x2)x2 (proof)
Param SNoS_SNoS_ : ιι
Known SNoLev_indSNoLev_ind : ∀ x0 : ι → ο . (∀ x1 . SNo x1(∀ x2 . x2SNoS_ (SNoLev x1)x0 x2)x0 x1)∀ x1 . SNo x1x0 x1
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SNoCutP_SNoCut_LSNoCutP_SNoCut_L : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1)
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNoCutP_SNoCut_RSNoCutP_SNoCut_R : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2
Known SNoCutP_SNo_SNoCutSNoCutP_SNo_SNoCut : ∀ x0 x1 . SNoCutP x0 x1SNo (SNoCut x0 x1)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoL_SNoSSNoL_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoL x0x1SNoS_ (SNoLev x0)
Known SNoR_SNoSSNoR_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoR x0x1SNoS_ (SNoLev x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known ordinal_TransSetordinal_TransSet : ∀ x0 . ordinal x0TransSet x0
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Theorem mul_SNo_prop_1mul_SNo_prop_1 : ∀ x0 . SNo x0∀ x1 . SNo x1∀ x2 : ο . (SNo (mul_SNo x0 x1)(∀ x3 . x3SNoL x0∀ x4 . x4SNoL x1SNoLt (add_SNo (mul_SNo x3 x1) (mul_SNo x0 x4)) (add_SNo (mul_SNo x0 x1) (mul_SNo x3 x4)))(∀ x3 . x3SNoR x0∀ x4 . x4SNoR x1SNoLt (add_SNo (mul_SNo x3 x1) (mul_SNo x0 x4)) (add_SNo (mul_SNo x0 x1) (mul_SNo x3 x4)))(∀ x3 . x3SNoL x0∀ x4 . x4SNoR x1SNoLt (add_SNo (mul_SNo x0 x1) (mul_SNo x3 x4)) (add_SNo (mul_SNo x3 x1) (mul_SNo x0 x4)))(∀ x3 . x3SNoR x0∀ x4 . x4SNoL x1SNoLt (add_SNo (mul_SNo x0 x1) (mul_SNo x3 x4)) (add_SNo (mul_SNo x3 x1) (mul_SNo x0 x4)))x2)x2 (proof)

previous assets