Search for blocks/addresses/...
Proofgold Address
address
PUd6hY2ZwhN11BaJJsW7Vjyuf9TMCXewSaQ
total
0
mg
-
conjpub
-
current assets
ab264..
/
b26b4..
bday:
14958
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
f03aa..
:
∀ x0 .
atleastp
3
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
)
⟶
x1
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
PigeonHole_nat
PigeonHole_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
ordsucc
x0
⟶
x1
x2
∈
x0
)
⟶
not
(
∀ x2 .
x2
∈
ordsucc
x0
⟶
∀ x3 .
x3
∈
ordsucc
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
Known
nat_3
nat_3
:
nat_p
3
Known
surj_inv_inj
surj_inv_inj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
inj
x1
x0
(
inv
x0
x2
)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
In_2_3
In_2_3
:
2
∈
3
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
In_1_3
In_1_3
:
1
∈
3
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
In_0_3
In_0_3
:
0
∈
3
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Known
In_0_4
In_0_4
:
0
∈
4
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Known
a6047..
:
∀ x0 .
x0
⊆
prim4
3
⟶
∀ x1 .
x1
⊆
prim4
3
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
3
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
3
)
(
and
(
and
(
x5
=
x7
⟶
∀ x8 : ο .
x8
)
(
x5
∈
x2
=
x5
∈
x3
)
)
(
x7
∈
x2
=
x7
∈
x3
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x2 : ο .
(
atleastp
x0
1
⟶
x2
)
⟶
(
atleastp
x1
1
⟶
x2
)
⟶
(
equip
2
x0
⟶
equip
2
x1
⟶
x2
)
⟶
x2
Known
89205..
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
nIn
x2
x1
)
⟶
atleastp
6
(
binunion
x0
x1
)
⟶
atleastp
x0
1
⟶
atleastp
x1
(
prim4
2
)
⟶
False
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
binunion_com
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_5
nat_5
:
nat_p
5
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
385ef..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
5b991..
:
equip
4
(
setsum
2
2
)
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
In_4_5
In_4_5
:
4
∈
5
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
dfb49..
:
∀ x0 x1 .
x1
⊆
prim4
(
ordsucc
x0
)
⟶
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
ordsucc
x0
)
(
x5
∈
x2
=
x5
∈
x3
)
⟶
x4
)
⟶
x4
)
⟶
atleastp
x1
(
prim4
x0
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Theorem
not_TwoRamseyProp_atleast_3_6_Power_4
:
not
(
TwoRamseyProp_atleastp
3
6
(
prim4
4
)
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Theorem
4618e..
not_TwoRamseyProp_3_6_Power_4
:
not
(
TwoRamseyProp
3
6
(
prim4
4
)
)
(proof)
Known
nat_7
nat_7
:
nat_p
7
Known
In_6_7
In_6_7
:
6
∈
7
Theorem
1d99f..
not_TwoRamseyProp_3_7_Power_4
:
not
(
TwoRamseyProp
3
7
(
prim4
4
)
)
(proof)
Known
nat_8
nat_8
:
nat_p
8
Known
In_6_8
In_6_8
:
6
∈
8
Theorem
b6366..
not_TwoRamseyProp_3_8_Power_4
:
not
(
TwoRamseyProp
3
8
(
prim4
4
)
)
(proof)
Known
nat_9
nat_9
:
nat_p
9
Known
In_6_9
In_6_9
:
6
∈
9
Theorem
f990b..
not_TwoRamseyProp_3_9_Power_4
:
not
(
TwoRamseyProp
3
9
(
prim4
4
)
)
(proof)
Known
nat_10
nat_10
:
nat_p
10
Known
1beb5..
:
6
∈
10
Theorem
a1e0f..
not_TwoRamseyProp_3_10_Power_4
:
not
(
TwoRamseyProp
3
10
(
prim4
4
)
)
(proof)
Known
nat_4
nat_4
:
nat_p
4
Known
In_3_4
In_3_4
:
3
∈
4
Theorem
f5ebc..
not_TwoRamseyProp_4_6_Power_4
:
not
(
TwoRamseyProp
4
6
(
prim4
4
)
)
(proof)
Theorem
a1968..
not_TwoRamseyProp_4_7_Power_4
:
not
(
TwoRamseyProp
4
7
(
prim4
4
)
)
(proof)
Theorem
fa29b..
not_TwoRamseyProp_4_8_Power_4
:
not
(
TwoRamseyProp
4
8
(
prim4
4
)
)
(proof)
Theorem
5914c..
not_TwoRamseyProp_4_9_Power_4
:
not
(
TwoRamseyProp
4
9
(
prim4
4
)
)
(proof)
Known
In_3_5
In_3_5
:
3
∈
5
Theorem
c0836..
not_TwoRamseyProp_5_6_Power_4
:
not
(
TwoRamseyProp
5
6
(
prim4
4
)
)
(proof)
Theorem
c6b25..
not_TwoRamseyProp_5_7_Power_4
:
not
(
TwoRamseyProp
5
7
(
prim4
4
)
)
(proof)
Theorem
f4df6..
not_TwoRamseyProp_5_8_Power_4
:
not
(
TwoRamseyProp
5
8
(
prim4
4
)
)
(proof)
Known
nat_6
nat_6
:
nat_p
6
Known
In_3_6
In_3_6
:
3
∈
6
Theorem
3ce96..
not_TwoRamseyProp_6_6_Power_4
:
not
(
TwoRamseyProp
6
6
(
prim4
4
)
)
(proof)
Theorem
c642e..
not_TwoRamseyProp_6_7_Power_4
:
not
(
TwoRamseyProp
6
7
(
prim4
4
)
)
(proof)
previous assets