Search for blocks/addresses/...
Proofgold Address
address
PUdS4AtcTRt8ePbA11983pssUeBducN9Nvr
total
0
mg
-
conjpub
-
current assets
e8d0f..
/
7d1dd..
bday:
31414
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
u22
:
ι
Definition
94591..
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x3
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x3
x3
x2
x2
x2
x3
)
(
x1
x3
x3
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x2
x2
)
(
x1
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x3
x2
x2
)
Param
55574..
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Definition
0aea9..
:=
λ x0 x1 .
x0
∈
u22
⟶
x1
∈
u22
⟶
94591..
(
55574..
x0
)
(
55574..
x1
)
=
λ x3 x4 .
x3
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
TwoRamseyGraph_3_6_17
:
ι
→
ι
→
ο
Known
1e4e8..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
Param
u17
:
ι
Known
a0edc..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 .
x1
∈
u17
⟶
TwoRamseyGraph_3_6_17
x0
x1
⟶
0aea9..
x0
x1
Known
078d9..
:
u8
⊆
u17
Theorem
2e7e5..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
(proof)
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Param
u19
:
ι
Param
u21
:
ι
Param
ordinal
ordinal
:
ι
→
ο
Param
nat_p
nat_p
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Known
2ec5a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
atleastp
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x2
)
⟶
x2
Known
nat_3
nat_3
:
nat_p
3
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
nSubq
nSubq
:=
λ x0 x1 .
not
(
x0
⊆
x1
)
Known
be1cd..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x1
=
binunion
x3
(
Sing
x4
)
⟶
x2
)
⟶
x2
Known
nat_2
nat_2
:
nat_p
2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
090fa..
:
∀ x0 .
x0
∈
setminus
u11
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
x0
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
620a1..
:
∀ x0 .
x0
⊆
u6
⟶
atleastp
u4
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
nat_6
nat_6
:
nat_p
6
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
480b2..
:
add_nat
u3
u1
=
u4
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_1
nat_1
:
nat_p
1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Known
d778e..
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
equip
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
bd770..
:
u6
⊆
u8
Known
021ac..
:
u7
⊆
u8
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
a2937..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u8
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u9
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
Known
b4ae4..
:
u11
⊆
u17
Known
c0db6..
:
∀ x0 .
x0
⊆
u8
⟶
atleastp
u2
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u8
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
TwoRamseyGraph_3_6_17
x1
u10
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x2
∈
u4
)
⟶
x1
)
⟶
x1
Known
896c4..
:
55574..
u9
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x10
Known
89d98..
:
55574..
u10
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x11
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
u4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
x0
Known
7410a..
:
55574..
0
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x1
Known
e86b0..
:
55574..
u17
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x18
Known
aafc6..
:
55574..
u1
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x2
Known
667cd..
:
55574..
u21
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x22
Known
fa851..
:
55574..
u2
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x3
Known
9379b..
:
55574..
u3
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x4
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
nat_8
nat_8
:
nat_p
8
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_11
nat_11
:
nat_p
u11
Theorem
d2f0d..
:
∀ x0 .
x0
⊆
u11
⟶
atleastp
u4
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u17
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u19
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u21
)
)
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
(proof)
Param
u18
:
ι
Known
nat_4
nat_4
:
nat_p
4
Known
86c65..
:
nat_p
u18
Param
u12
:
ι
Param
u13
:
ι
Param
u14
:
ι
Param
u15
:
ι
Param
u16
:
ι
Known
7618f..
:
∀ x0 .
x0
∈
setminus
u18
u12
⟶
∀ x1 :
ι → ο
.
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
u17
⟶
x1
x0
Known
9cadc..
:
∀ x0 .
x0
⊆
u12
⟶
atleastp
u5
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
TwoRamseyGraph_3_6_17
x1
x2
)
)
Known
893fe..
:
add_nat
u4
u1
=
u5
Known
2d2af..
:
u12
⊆
u17
Known
nat_12
nat_12
:
nat_p
u12
Known
2ab0d..
:
55574..
u12
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x13
Known
1435b..
:
55574..
u19
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x20
Known
0b155..
:
55574..
u13
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x14
Known
38fc2..
:
55574..
u14
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x15
Known
134b9..
:
55574..
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x16
Known
b8157..
:
55574..
u16
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x17
Known
66f20..
:
∀ x0 .
x0
∈
u17
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
3ed90..
:
0
∈
11
Known
c92a5..
:
1
∈
11
Known
f5815..
:
2
∈
11
Known
157cb..
:
3
∈
11
Known
52414..
:
4
∈
11
Known
4f9f7..
:
5
∈
11
Known
db527..
:
6
∈
11
Known
45b9a..
:
7
∈
11
Known
15f81..
:
8
∈
11
Known
2c8c5..
:
9
∈
11
Known
9be62..
:
10
∈
11
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
76683..
:
55574..
u11
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
x12
Theorem
82d29..
:
∀ x0 .
x0
⊆
u18
⟶
atleastp
u5
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u19
)
)
⟶
(
∀ x1 .
x1
∈
x0
⟶
not
(
0aea9..
x1
u21
)
)
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
0aea9..
x1
x2
)
)
(proof)
previous assets