Search for blocks/addresses/...

Proofgold Address

address
PUdS4AtcTRt8ePbA11983pssUeBducN9Nvr
total
0
mg
-
conjpub
-
current assets
e8d0f../7d1dd.. bday: 31414 doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Param atleastpatleastp : ιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param u22 : ι
Definition 94591.. := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x3 x2) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2 x2 x3 x3 x3 x2) (x1 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3) (x1 x3 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x3 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x3 x3 x2 x2 x2 x3) (x1 x3 x3 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x2 x2) (x1 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x3 x2 x2)
Param 55574.. : ιιιιιιιιιιιιιιιιιιιιιιιι
Definition 0aea9.. := λ x0 x1 . x0u22x1u2294591.. (55574.. x0) (55574.. x1) = λ x3 x4 . x3
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param TwoRamseyGraph_3_6_17 : ιιο
Known 1e4e8.. : ∀ x0 . x0u8atleastp u3 x0(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))∀ x1 : ο . (∀ x2 . and (x2x0) (x2u4)x1)x1
Param u17 : ι
Known a0edc.. : ∀ x0 . x0u17∀ x1 . x1u17TwoRamseyGraph_3_6_17 x0 x10aea9.. x0 x1
Known 078d9.. : u8u17
Theorem 2e7e5.. : ∀ x0 . x0u8atleastp u3 x0(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2))∀ x1 : ο . (∀ x2 . and (x2x0) (x2u4)x1)x1 (proof)
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Param u19 : ι
Param u21 : ι
Param ordinalordinal : ιο
Param nat_pnat_p : ιο
Param equipequip : ιιο
Known 2ec5a.. : ∀ x0 . nat_p x0∀ x1 . atleastp (ordsucc x0) x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 x4 . equip x0 x3x4x1x3x1x3x4x2)x2
Known nat_3nat_3 : nat_p 3
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition nSubqnSubq := λ x0 x1 . not (x0x1)
Known be1cd.. : ∀ x0 . nat_p x0∀ x1 . equip (ordsucc x0) x1(∀ x2 . x2x1ordinal x2)∀ x2 : ο . (∀ x3 x4 . equip x0 x3x4x1x3x1x3x4x1 = binunion x3 (Sing x4)x2)x2
Known nat_2nat_2 : nat_p 2
Definition nInnIn := λ x0 x1 . not (x0x1)
Param setminussetminus : ιιι
Known 090fa.. : ∀ x0 . x0setminus u11 u6∀ x1 : ι → ο . x1 u6x1 u7x1 u8x1 u9x1 u10x1 x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known 620a1.. : ∀ x0 . x0u6atleastp u4 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2))
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known nat_6nat_6 : nat_p 6
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Param setsumsetsum : ιιι
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Param add_natadd_nat : ιιι
Known 480b2.. : add_nat u3 u1 = u4
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_1nat_1 : nat_p 1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Known d778e.. : ∀ x0 x1 x2 x3 . equip x0 x2equip x1 x3(∀ x4 . x4x0nIn x4 x1)equip (binunion x0 x1) (setsum x2 x3)
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known bd770.. : u6u8
Known 021ac.. : u7u8
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known a2937.. : ∀ x0 . x0u8atleastp u2 x0(∀ x1 . x1x0not (TwoRamseyGraph_3_6_17 x1 u8))(∀ x1 . x1x0not (TwoRamseyGraph_3_6_17 x1 u9))(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))∀ x1 : ο . (∀ x2 . and (x2x0) (x2u4)x1)x1
Known b4ae4.. : u11u17
Known c0db6.. : ∀ x0 . x0u8atleastp u2 x0(∀ x1 . x1x0not (TwoRamseyGraph_3_6_17 x1 u8))(∀ x1 . x1x0not (TwoRamseyGraph_3_6_17 x1 u10))(∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))∀ x1 : ο . (∀ x2 . and (x2x0) (x2u4)x1)x1
Known 896c4.. : 55574.. u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x10
Known 89d98.. : 55574.. u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x11
Known cases_4cases_4 : ∀ x0 . x0u4∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 x0
Known 7410a.. : 55574.. 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x1
Known e86b0.. : 55574.. u17 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x18
Known aafc6.. : 55574.. u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x2
Known 667cd.. : 55574.. u21 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x22
Known fa851.. : 55574.. u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x3
Known 9379b.. : 55574.. u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x4
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known nat_8nat_8 : nat_p 8
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_11nat_11 : nat_p u11
Theorem d2f0d.. : ∀ x0 . x0u11atleastp u4 x0(∀ x1 . x1x0not (0aea9.. x1 u17))(∀ x1 . x1x0not (0aea9.. x1 u19))(∀ x1 . x1x0not (0aea9.. x1 u21))not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2)) (proof)
Param u18 : ι
Known nat_4nat_4 : nat_p 4
Known 86c65.. : nat_p u18
Param u12 : ι
Param u13 : ι
Param u14 : ι
Param u15 : ι
Param u16 : ι
Known 7618f.. : ∀ x0 . x0setminus u18 u12∀ x1 : ι → ο . x1 u12x1 u13x1 u14x1 u15x1 u16x1 u17x1 x0
Known 9cadc.. : ∀ x0 . x0u12atleastp u5 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_6_17 x1 x2))
Known 893fe.. : add_nat u4 u1 = u5
Known 2d2af.. : u12u17
Known nat_12nat_12 : nat_p u12
Known 2ab0d.. : 55574.. u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x13
Known 1435b.. : 55574.. u19 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x20
Known 0b155.. : 55574.. u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x14
Known 38fc2.. : 55574.. u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x15
Known 134b9.. : 55574.. u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x16
Known b8157.. : 55574.. u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x17
Known 66f20.. : ∀ x0 . x0u17∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 u6x1 u7x1 u8x1 u9x1 u10x1 u11x1 u12x1 u13x1 u14x1 u15x1 u16x1 x0
Known Subq_refSubq_ref : ∀ x0 . x0x0
Known 3ed90.. : 011
Known c92a5.. : 111
Known f5815.. : 211
Known 157cb.. : 311
Known 52414.. : 411
Known 4f9f7.. : 511
Known db527.. : 611
Known 45b9a.. : 711
Known 15f81.. : 811
Known 2c8c5.. : 911
Known 9be62.. : 1011
Known FalseEFalseE : False∀ x0 : ο . x0
Known 76683.. : 55574.. u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x12
Theorem 82d29.. : ∀ x0 . x0u18atleastp u5 x0(∀ x1 . x1x0not (0aea9.. x1 u19))(∀ x1 . x1x0not (0aea9.. x1 u21))not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (0aea9.. x1 x2)) (proof)

previous assets