Search for blocks/addresses/...

Proofgold Address

address
PUeVhxMfYnXRZRv4AAPCTHkbdnWBnsMAGTs
total
0
mg
-
conjpub
-
current assets
63474../1689d.. bday: 29749 doc published by PrQUS..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param surjsurj : ιι(ιι) → ο
Param omegaomega : ι
Known form100_22_v3form100_22_v3 : ∀ x0 : ι → ι . not (surj omega (prim4 omega) x0)
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Known bij_surjbij_surj : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2surj x0 x1 x2
Theorem form100_22_v1form100_22_v1 : not (equip omega (prim4 omega)) (proof)
Param SNoLtSNoLt : ιιο
Param eps_eps_ : ιι
Param ordsuccordsucc : ιι
Param nat_pnat_p : ιο
Param add_SNoadd_SNo : ιιι
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Param SNoSNo : ιο
Known add_SNo_eps_Ltadd_SNo_eps_Lt : ∀ x0 . SNo x0∀ x1 . x1omegaSNoLt x0 (add_SNo x0 (eps_ x1))
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Theorem eps_ordsucc_Lt : ∀ x0 . x0omegaSNoLt (eps_ (ordsucc x0)) (eps_ x0) (proof)
Param realreal : ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param SNoLevSNoLev : ιι
Param SNoS_SNoS_ : ιι
Param minus_SNominus_SNo : ιι
Param abs_SNoabs_SNo : ιι
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Param ordinalordinal : ιο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param binunionbinunion : ιιι
Param SetAdjoinSetAdjoin : ιιι
Param SingSing : ιι
Definition SNoElts_SNoElts_ := λ x0 . binunion x0 {SetAdjoin x1 (Sing 1)|x1 ∈ x0}
Param exactly1of2exactly1of2 : οοο
Definition SNo_SNo_ := λ x0 x1 . and (x1SNoElts_ x0) (∀ x2 . x2x0exactly1of2 (SetAdjoin x2 (Sing 1)x1) (x2x1))
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known omega_ordinalomega_ordinal : ordinal omega
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Known ordinal_SNo_ordinal_SNo_ : ∀ x0 . ordinal x0SNo_ x0 x0
Known ordinal_Emptyordinal_Empty : ordinal 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known abs_SNo_minusabs_SNo_minus : ∀ x0 . SNo x0abs_SNo (minus_SNo x0) = abs_SNo x0
Param SNoLeSNoLe : ιιο
Known nonneg_abs_SNononneg_abs_SNo : ∀ x0 . SNoLe 0 x0abs_SNo x0 = x0
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Theorem real_pos_eps_ : ∀ x0 . x0realSNoLt 0 x0∀ x1 : ο . (∀ x2 . and (x2omega) (SNoLt (eps_ x2) x0)x1)x1 (proof)
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known add_SNo_minus_Lt2badd_SNo_minus_Lt2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x2 x1) x0SNoLt x2 (add_SNo x0 (minus_SNo x1))
Known SNo_0SNo_0 : SNo 0
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known add_SNo_minus_Lt2add_SNo_minus_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x2 (add_SNo x0 (minus_SNo x1))SNoLt (add_SNo x2 x1) x0
Known add_SNo_Lt2_canceladd_SNo_Lt2_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)SNoLt x1 x2
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Theorem real_Lt_SNoS_omega_inter : ∀ x0 . x0real∀ x1 . x1realSNoLt x0 x1∀ x2 : ο . (∀ x3 . and (x3SNoS_ omega) (and (SNoLt x0 x3) (SNoLt x3 x1))x2)x2 (proof)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Param mul_SNomul_SNo : ιιι
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Known mul_SNo_In_omegamul_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo x0 x1omega
Known nat_2nat_2 : nat_p 2
Known add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known nat_1nat_1 : nat_p 1
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Param TransSetTransSet : ιο
Known TransSet_In_ordsucc_SubqTransSet_In_ordsucc_Subq : ∀ x0 x1 . TransSet x1x0ordsucc x1x0x1
Known omega_TransSetomega_TransSet : TransSet omega
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Known mul_SNo_nonzero_cancelmul_SNo_nonzero_cancel : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2
Known SNo_2SNo_2 : SNo 2
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Param even_nateven_nat : ιο
Param odd_natodd_nat : ιο
Known even_nat_not_odd_nateven_nat_not_odd_nat : ∀ x0 . even_nat x0not (odd_nat x0)
Param mul_natmul_nat : ιιι
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known even_nat_doubleeven_nat_double : ∀ x0 . nat_p x0even_nat (mul_nat 2 x0)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known SNo_1SNo_1 : SNo 1
Known ordinal_ordsucc_SNo_eqordinal_ordsucc_SNo_eq : ∀ x0 . ordinal x0ordsucc x0 = add_SNo 1 x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known even_nat_odd_nat_Seven_nat_odd_nat_S : ∀ x0 . even_nat x0odd_nat (ordsucc x0)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known add_SNo_cancel_Radd_SNo_cancel_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x2 x1x0 = x2
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem atleastp_SNoS_ordsucc_omega_Power_omegaatleastp_SNoS_ordsucc_omega_Power_omega : atleastp (SNoS_ (ordsucc omega)) (prim4 omega) (proof)
Param finitefinite : ιο
Definition infiniteinfinite := λ x0 . not (finite x0)
Param nInnIn : ιιο
Known finite_indfinite_ind : ∀ x0 : ι → ο . x0 0(∀ x1 x2 . finite x1nIn x2 x1x0 x1x0 (binunion x1 (Sing x2)))∀ x1 . finite x1x0 x1
Known Repl_EmptyRepl_Empty : ∀ x0 : ι → ι . prim5 0 x0 = 0
Known finite_Emptyfinite_Empty : finite 0
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Known binunion_finitebinunion_finite : ∀ x0 . finite x0∀ x1 . finite x1finite (binunion x0 x1)
Known 28148..Sing_finite : ∀ x0 . finite (Sing x0)
Theorem Repl_finiteRepl_finite : ∀ x0 : ι → ι . ∀ x1 . finite x1finite (prim5 x1 x0) (proof)
Known Subq_finiteSubq_finite : ∀ x0 . finite x0∀ x1 . x1x0finite x1
Known 9b83b..nat_finite : ∀ x0 . nat_p x0finite x0
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem infinite_biggerinfinite_bigger : ∀ x0 . x0omegainfinite x0∀ x1 . x1omega∀ x2 : ο . (∀ x3 . and (x3x0) (x1x3)x2)x2 (proof)

previous assets