current assets |
---|
b2600../8d9f2.. bday: 4913 doc published by Pr6Pc..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition explicit_Natsexplicit_Nats := λ x0 x1 . λ x2 : ι → ι . and (and (and (and (x1 ∈ x0) (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x0)) (∀ x3 . x3 ∈ x0 ⟶ x2 x3 = x1 ⟶ ∀ x4 : ο . x4)) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)) (∀ x3 : ι → ο . x3 x1 ⟶ (∀ x4 . x3 x4 ⟶ x3 (x2 x4)) ⟶ ∀ x4 . x4 ∈ x0 ⟶ x3 x4)Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ and (and (and (and x0 x1) x2) x3) x4Theorem explicit_Nats_Iexplicit_Nats_I : ∀ x0 x1 . ∀ x2 : ι → ι . x1 ∈ x0 ⟶ (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x0) ⟶ (∀ x3 . x3 ∈ x0 ⟶ x2 x3 = x1 ⟶ ∀ x4 : ο . x4) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4) ⟶ (∀ x3 : ι → ο . x3 x1 ⟶ (∀ x4 . x3 x4 ⟶ x3 (x2 x4)) ⟶ ∀ x4 . x4 ∈ x0 ⟶ x3 x4) ⟶ explicit_Nats x0 x1 x2 (proof)Known and5Eand5E : ∀ x0 x1 x2 x3 x4 : ο . and (and (and (and x0 x1) x2) x3) x4 ⟶ ∀ x5 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5) ⟶ x5Theorem explicit_Nats_Eexplicit_Nats_E : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ο . (explicit_Nats x0 x1 x2 ⟶ x1 ∈ x0 ⟶ (∀ x4 . x4 ∈ x0 ⟶ x2 x4 ∈ x0) ⟶ (∀ x4 . x4 ∈ x0 ⟶ x2 x4 = x1 ⟶ ∀ x5 : ο . x5) ⟶ (∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 = x2 x5 ⟶ x4 = x5) ⟶ (∀ x4 : ι → ο . x4 x1 ⟶ (∀ x5 . x4 x5 ⟶ x4 (x2 x5)) ⟶ ∀ x5 . x5 ∈ x0 ⟶ x4 x5) ⟶ x3) ⟶ explicit_Nats x0 x1 x2 ⟶ x3 (proof)Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Theorem explicit_Nats_indexplicit_Nats_ind : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2 ⟶ ∀ x3 : ι → ο . x3 x1 ⟶ (∀ x4 . x4 ∈ x0 ⟶ x3 x4 ⟶ x3 (x2 x4)) ⟶ ∀ x4 . x4 ∈ x0 ⟶ x3 x4 (proof)Param omegaomega : ιParam ordsuccordsucc : ι → ιKnown e4648.. : 0 ∈ omegaKnown omega_ordsuccomega_ordsucc : ∀ x0 . x0 ∈ omega ⟶ ordsucc x0 ∈ omegaKnown neq_ordsucc_0neq_ordsucc_0 : ∀ x0 . ordsucc x0 = 0 ⟶ ∀ x1 : ο . x1Known ordsucc_injordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1 ⟶ x0 = x1Definition nat_pnat_p := λ x0 . ∀ x1 : ι → ο . x1 0 ⟶ (∀ x2 . x1 x2 ⟶ x1 (ordsucc x2)) ⟶ x1 x0Known omega_nat_pomega_nat_p : ∀ x0 . x0 ∈ omega ⟶ nat_p x0Theorem explicit_Nats_omegaexplicit_Nats_omega : explicit_Nats omega 0 ordsucc (proof)Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)) (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (x2 x5 = x3) ⟶ x4) ⟶ x4)Theorem explicit_Nats_transferexplicit_Nats_transfer : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 x4 . ∀ x5 x6 : ι → ι . explicit_Nats x0 x1 x2 ⟶ bij x0 x3 x6 ⟶ x6 x1 = x4 ⟶ (∀ x7 . x7 ∈ x0 ⟶ x6 (x2 x7) = x5 (x6 x7)) ⟶ explicit_Nats x3 x4 x5 (proof)Definition explicit_Fieldexplicit_Field := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . and (and (and (and (and (and (and (and (and (and (and (and (and (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5)) (x1 ∈ x0)) (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = x4 x6 x5)) (x2 ∈ x0)) (x2 = x1 ⟶ ∀ x5 : ο . x5)) (∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5)) (∀ x5 . x5 ∈ x0 ⟶ (x5 = x1 ⟶ ∀ x6 : ο . x6) ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x4 x5 x7 = x2) ⟶ x6) ⟶ x6)) (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))Known and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6 ⟶ and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6Theorem explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5) ⟶ x1 ∈ x0 ⟶ (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = x4 x6 x5) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x5 : ο . x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ (x5 = x1 ⟶ ∀ x6 : ο . x6) ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x4 x5 x7 = x2) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7)) ⟶ explicit_Field x0 x1 x2 x3 x4 (proof)Known and7Eand7E : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6 ⟶ ∀ x7 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6 ⟶ x7) ⟶ x7Theorem explicit_Field_Eexplicit_Field_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ο . (explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x6 (x3 x7 x8) = x3 (x3 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x6 x7 = x3 x7 x6) ⟶ x1 ∈ x0 ⟶ (∀ x6 . x6 ∈ x0 ⟶ x3 x1 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 : ο . (∀ x8 . and (x8 ∈ x0) (x3 x6 x8 = x1) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 ∈ x0) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x4 x7 x8) = x4 (x4 x6 x7) x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x6 : ο . x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ x4 x2 x6 = x6) ⟶ (∀ x6 . x6 ∈ x0 ⟶ (x6 = x1 ⟶ ∀ x7 : ο . x7) ⟶ ∀ x7 : ο . (∀ x8 . and (x8 ∈ x0) (x4 x6 x8 = x2) ⟶ x7) ⟶ x7) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x6 (x3 x7 x8) = x3 (x4 x6 x7) (x4 x6 x8)) ⟶ x5) ⟶ explicit_Field x0 x1 x2 x3 x4 ⟶ x5 (proof)Definition explicit_Field_minusexplicit_Field_minus := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 . prim0 (λ x6 . and (x6 ∈ x0) (x3 x5 x6 = x1))Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2 ⟶ x1) ⟶ x1) ⟶ x0 (prim0 x0)Theorem explicit_Field_minus_propexplicit_Field_minus_prop : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ and (explicit_Field_minus x0 x1 x2 x3 x4 x5 ∈ x0) (x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1) (proof)Theorem explicit_Field_minus_closexplicit_Field_minus_clos : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x5 ∈ x0 (proof)Theorem explicit_Field_minus_Rexplicit_Field_minus_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1 (proof)Theorem explicit_Field_minus_Lexplicit_Field_minus_L : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 (explicit_Field_minus x0 x1 x2 x3 x4 x5) x5 = x1 (proof)Theorem explicit_Field_plus_cancelLexplicit_Field_plus_cancelL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 x6 = x3 x5 x7 ⟶ x6 = x7 (proof)Theorem explicit_Field_plus_cancelRexplicit_Field_plus_cancelR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 x7 = x3 x6 x7 ⟶ x5 = x6 (proof)Theorem explicit_Field_minus_involexplicit_Field_minus_invol : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ explicit_Field_minus x0 x1 x2 x3 x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x5 (proof)Theorem explicit_Field_minus_one_Inexplicit_Field_minus_one_In : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x2 ∈ x0 (proof)Theorem explicit_Field_zero_multRexplicit_Field_zero_multR : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x4 x5 x1 = x1 (proof)Theorem explicit_Field_zero_multLexplicit_Field_zero_multL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x4 x1 x5 = x1 (proof)Theorem explicit_Field_minus_multexplicit_Field_minus_mult : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x5 = x4 (explicit_Field_minus x0 x1 x2 x3 x4 x2) x5 (proof)Theorem explicit_Field_minus_one_squareexplicit_Field_minus_one_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ x4 (explicit_Field_minus x0 x1 x2 x3 x4 x2) (explicit_Field_minus x0 x1 x2 x3 x4 x2) = x2 (proof)Theorem explicit_Field_minus_squareexplicit_Field_minus_square : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x4 x5 x5 (proof)Definition iffiff := λ x0 x1 : ο . and (x0 ⟶ x1) (x1 ⟶ x0)Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Definition explicit_OrderedFieldexplicit_OrderedField := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . and (and (and (and (and (explicit_Field x0 x1 x2 x3 x4) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x6 x7 ⟶ x5 x7 x8 ⟶ x5 x6 x8)) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7))) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ or (x5 x6 x7) (x5 x7 x6))) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x6 x7 ⟶ x5 (x3 x6 x8) (x3 x7 x8))) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x5 x1 x6 ⟶ x5 x1 x7 ⟶ x5 x1 (x4 x6 x7))Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ and (and (and (and (and x0 x1) x2) x3) x4) x5Theorem explicit_OrderedField_Iexplicit_OrderedField_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x6 x7 ⟶ x5 x7 x8 ⟶ x5 x6 x8) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7)) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ or (x5 x6 x7) (x5 x7 x6)) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x6 x7 ⟶ x5 (x3 x6 x8) (x3 x7 x8)) ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x5 x1 x6 ⟶ x5 x1 x7 ⟶ x5 x1 (x4 x6 x7)) ⟶ explicit_OrderedField x0 x1 x2 x3 x4 x5 (proof)Known and6Eand6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5 ⟶ ∀ x6 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ x5 ⟶ x6) ⟶ x6Theorem explicit_OrderedField_Eexplicit_OrderedField_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x5 x7 x8 ⟶ x5 x8 x9 ⟶ x5 x7 x9) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ iff (and (x5 x7 x8) (x5 x8 x7)) (x7 = x8)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ or (x5 x7 x8) (x5 x8 x7)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x5 x7 x8 ⟶ x5 (x3 x7 x9) (x3 x8 x9)) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x1 x7 ⟶ x5 x1 x8 ⟶ x5 x1 (x4 x7 x8)) ⟶ x6) ⟶ explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ x6 (proof)Definition ltlt := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 x7 . and (x5 x6 x7) (x6 = x7 ⟶ ∀ x8 : ο . x8)Definition natOfOrderedField_pnatOfOrderedField_p := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 . ∀ x7 : ι → ο . x7 x1 ⟶ (∀ x8 . x7 x8 ⟶ x7 (x3 x8 x2)) ⟶ x7 x6Param SepSep : ι → (ι → ο) → ιKnown SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ x0 ⟶ x1 x2 ⟶ x2 ∈ Sep x0 x1Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ and (x2 ∈ x0) (x1 x2)Theorem explicit_Nats_natOfOrderedFieldexplicit_Nats_natOfOrderedField : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ explicit_Nats (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) x1 (λ x6 . x3 x6 x2) (proof)Param PiPi : ι → (ι → ι) → ιDefinition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)Param apap : ι → ι → ιDefinition explicit_Realsexplicit_Reals := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . and (and (explicit_OrderedField x0 x1 x2 x3 x4 x5) (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ lt x0 x1 x2 x3 x4 x5 x1 x6 ⟶ x5 x1 x7 ⟶ ∀ x8 : ο . (∀ x9 . and (x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x9 x6)) ⟶ x8) ⟶ x8)) (∀ x6 . x6 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ ∀ x7 . x7 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ (∀ x8 . x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8))) ⟶ ∀ x8 : ο . (∀ x9 . and (x9 ∈ x0) (∀ x10 . x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (x5 (ap x6 x10) x9) (x5 x9 (ap x7 x10))) ⟶ x8) ⟶ x8)Known and3Iand3I : ∀ x0 x1 x2 : ο . x0 ⟶ x1 ⟶ x2 ⟶ and (and x0 x1) x2Theorem explicit_Reals_Iexplicit_Reals_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ (∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ lt x0 x1 x2 x3 x4 x5 x1 x6 ⟶ x5 x1 x7 ⟶ ∀ x8 : ο . (∀ x9 . and (x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x9 x6)) ⟶ x8) ⟶ x8) ⟶ (∀ x6 . x6 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ ∀ x7 . x7 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ (∀ x8 . x8 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8))) ⟶ ∀ x8 : ο . (∀ x9 . and (x9 ∈ x0) (∀ x10 . x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (x5 (ap x6 x10) x9) (x5 x9 (ap x7 x10))) ⟶ x8) ⟶ x8) ⟶ explicit_Reals x0 x1 x2 x3 x4 x5 (proof)Known and3Eand3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2 ⟶ ∀ x3 : ο . (x0 ⟶ x1 ⟶ x2 ⟶ x3) ⟶ x3Theorem explicit_Reals_Eexplicit_Reals_E : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ο . (explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ lt x0 x1 x2 x3 x4 x5 x1 x7 ⟶ x5 x1 x8 ⟶ ∀ x9 : ο . (∀ x10 . and (x10 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x8 (x4 x10 x7)) ⟶ x9) ⟶ x9) ⟶ (∀ x7 . x7 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ ∀ x8 . x8 ∈ setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) ⟶ (∀ x9 . x9 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9))) ⟶ ∀ x9 : ο . (∀ x10 . and (x10 ∈ x0) (∀ x11 . x11 ∈ Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5) ⟶ and (x5 (ap x7 x11) x10) (x5 x10 (ap x8 x11))) ⟶ x9) ⟶ x9) ⟶ x6) ⟶ explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ x6 (proof)Theorem explicit_Field_transferexplicit_Field_transfer : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 x6 x7 . ∀ x8 x9 : ι → ι → ι . ∀ x10 : ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ bij x0 x5 x10 ⟶ x10 x1 = x6 ⟶ x10 x2 = x7 ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ x10 (x3 x11 x12) = x8 (x10 x11) (x10 x12)) ⟶ (∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ x10 (x4 x11 x12) = x9 (x10 x11) (x10 x12)) ⟶ explicit_Field x5 x6 x7 x8 x9 (proof)Known iffIiffI : ∀ x0 x1 : ο . (x0 ⟶ x1) ⟶ (x1 ⟶ x0) ⟶ iff x0 x1Known orILorIL : ∀ x0 x1 : ο . x0 ⟶ or x0 x1Known orIRorIR : ∀ x0 x1 : ο . x1 ⟶ or x0 x1Theorem explicit_OrderedField_transferexplicit_OrderedField_transfer : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 x7 x8 . ∀ x9 x10 : ι → ι → ι . ∀ x11 : ι → ι → ο . ∀ x12 : ι → ι . explicit_OrderedField x0 x1 x2 x3 x4 x5 ⟶ bij x0 x6 x12 ⟶ x12 x1 = x7 ⟶ x12 x2 = x8 ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ x12 (x3 x13 x14) = x9 (x12 x13) (x12 x14)) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ x12 (x4 x13 x14) = x10 (x12 x13) (x12 x14)) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ iff (x5 x13 x14) (x11 (x12 x13) (x12 x14))) ⟶ explicit_OrderedField x6 x7 x8 x9 x10 x11 (proof)Param lamSigma : ι → (ι → ι) → ιKnown SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ x2 ∈ x0Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ap (lam x0 x1) x2 = x1 x2Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2 ∈ Pi x0 x1 ⟶ x3 ∈ x0 ⟶ ap x2 x3 ∈ x1 x3Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1 x3) ⟶ lam x0 x2 ∈ Pi x0 x1Theorem explicit_Reals_transferexplicit_Reals_transfer : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 x7 x8 . ∀ x9 x10 : ι → ι → ι . ∀ x11 : ι → ι → ο . ∀ x12 : ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ bij x0 x6 x12 ⟶ x12 x1 = x7 ⟶ x12 x2 = x8 ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ x12 (x3 x13 x14) = x9 (x12 x13) (x12 x14)) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ x12 (x4 x13 x14) = x10 (x12 x13) (x12 x14)) ⟶ (∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ iff (x5 x13 x14) (x11 (x12 x13) (x12 x14))) ⟶ explicit_Reals x6 x7 x8 x9 x10 x11 (proof)Definition explicit_Complexexplicit_Complex := λ x0 . λ x1 x2 : ι → ι . λ x3 x4 x5 . λ x6 x7 : ι → ι → ι . and (and (and (and (and (and (and (and (explicit_Field x0 x3 x4 x6 x7) (∀ x8 : ο . (∀ x9 : ι → ι → ο . explicit_Reals {x10 ∈ x0|x1 x10 = x10} x3 x4 x6 x7 x9 ⟶ x8) ⟶ x8)) (∀ x8 . x8 ∈ x0 ⟶ x2 x8 ∈ {x9 ∈ x0|x1 x9 = x9})) (x5 ∈ x0)) (∀ x8 . x8 ∈ x0 ⟶ x1 x8 ∈ x0)) (∀ x8 . x8 ∈ x0 ⟶ x2 x8 ∈ x0)) (∀ x8 . x8 ∈ x0 ⟶ x8 = x6 (x1 x8) (x7 x5 (x2 x8)))) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x1 x8 = x1 x9 ⟶ x2 x8 = x2 x9 ⟶ x8 = x9)) (x6 (x7 x5 x5) x4 = x3)Theorem explicit_Complex_Iexplicit_Complex_I : ∀ x0 . ∀ x1 x2 : ι → ι . ∀ x3 x4 x5 . ∀ x6 x7 : ι → ι → ι . explicit_Field x0 x3 x4 x6 x7 ⟶ (∀ x8 : ο . (∀ x9 : ι → ι → ο . explicit_Reals {x10 ∈ x0|x1 x10 = x10} x3 x4 x6 x7 x9 ⟶ x8) ⟶ x8) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x2 x8 ∈ {x9 ∈ x0|x1 x9 = x9}) ⟶ x5 ∈ x0 ⟶ (∀ x8 . x8 ∈ x0 ⟶ x1 x8 ∈ x0) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x2 x8 ∈ x0) ⟶ (∀ x8 . x8 ∈ x0 ⟶ x8 = x6 (x1 x8) (x7 x5 (x2 x8))) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x1 x8 = x1 x9 ⟶ x2 x8 = x2 x9 ⟶ x8 = x9) ⟶ x6 (x7 x5 x5) x4 = x3 ⟶ explicit_Complex x0 x1 x2 x3 x4 x5 x6 x7 (proof)
|
|