Search for blocks/addresses/...

Proofgold Address

address
PUewm2nGz4XnijWrGaA1TninG9iU6Vis7CB
total
0
mg
-
conjpub
-
current assets
c51c2../603c5.. bday: 27779 doc published by PrQUS..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param famunionfamunion : ι(ιι) → ι
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Theorem famunion_Subqfamunion_Subq : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3x2 x3)famunion x0 x1famunion x0 x2 (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known Subq_refSubq_ref : ∀ x0 . x0x0
Theorem famunion_extfamunion_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)famunion x0 x1 = famunion x0 x2 (proof)
Param nat_pnat_p : ιο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known nat_inv_imprednat_inv_impred : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Param ordinalordinal : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Theorem nat_Subq_add_exnat_Subq_add_ex : ∀ x0 . nat_p x0∀ x1 . nat_p x1x0x1∀ x2 : ο . (∀ x3 . and (nat_p x3) (x1 = add_nat x3 x0)x2)x2 (proof)
Param SNoSNo : ιο
Param SNoLeSNoLe : ιιο
Param SNoLtSNoLt : ιιο
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Theorem SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1) (proof)
Param mul_SNomul_SNo : ιιι
Known SNo_0SNo_0 : SNo 0
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known mul_SNo_pos_posmul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Theorem mul_SNo_nonneg_nonnegmul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1) (proof)
Known pos_mul_SNo_Lt2pos_mul_SNo_Lt2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt 0 x0SNoLt 0 x1SNoLt x0 x2SNoLt x1 x3SNoLt (mul_SNo x0 x1) (mul_SNo x2 x3)
Theorem SNo_pos_sqr_uniqSNo_pos_sqr_uniq : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1mul_SNo x0 x0 = mul_SNo x1 x1x0 = x1 (proof)
Known SNo_zero_or_sqr_posSNo_zero_or_sqr_pos : ∀ x0 . SNo x0or (x0 = 0) (SNoLt 0 (mul_SNo x0 x0))
Theorem SNo_nonneg_sqr_uniqSNo_nonneg_sqr_uniq : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1mul_SNo x0 x0 = mul_SNo x1 x1x0 = x1 (proof)
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoLSNoL : ιι
Param SNoCutSNoCut : ιιι
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param SNoLevSNoLev : ιι
Param binunionbinunion : ιιι
Param iffiff : οοο
Definition PNoEq_PNoEq_ := λ x0 . λ x1 x2 : ι → ο . ∀ x3 . x3x0iff (x1 x3) (x2 x3)
Definition SNoEq_SNoEq_ := λ x0 x1 x2 . PNoEq_ x0 (λ x3 . x3x1) (λ x3 . x3x2)
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known andELandEL : ∀ x0 x1 : ο . and x0 x1x0
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Theorem SNoL_SNoCutP_exSNoL_SNoCutP_ex : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2SNoL (SNoCut x0 x1)∀ x3 : ο . (∀ x4 . and (x4x0) (SNoLe x2 x4)x3)x3 (proof)
Param SNoRSNoR : ιι
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Theorem SNoR_SNoCutP_exSNoR_SNoCutP_ex : ∀ x0 x1 . SNoCutP x0 x1∀ x2 . x2SNoR (SNoCut x0 x1)∀ x3 : ο . (∀ x4 . and (x4x1) (SNoLe x4 x2)x3)x3 (proof)
Param binintersectbinintersect : ιιι
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Known ordinal_Emptyordinal_Empty : ordinal 0
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known SNo_eqSNo_eq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0 = SNoLev x1SNoEq_ (SNoLev x0) x0 x1x0 = x1
Known SNo_1SNo_1 : SNo 1
Known nat_1nat_1 : nat_p 1
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known In_0_1In_0_1 : 01
Theorem pos_low_eq_onepos_low_eq_one : ∀ x0 . SNo x0SNoLt 0 x0SNoLev x01x0 = 1 (proof)
Known mul_SNo_neg_posmul_SNo_neg_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 0SNoLt 0 x1SNoLt (mul_SNo x0 x1) 0
Known SNoLe_antisymSNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1
Theorem mul_SNo_nonpos_posmul_SNo_nonpos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 0SNoLt 0 x1SNoLe (mul_SNo x0 x1) 0 (proof)
Known mul_SNo_neg_negmul_SNo_neg_neg : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 0SNoLt x1 0SNoLt 0 (mul_SNo x0 x1)
Theorem mul_SNo_nonpos_negmul_SNo_nonpos_neg : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 0SNoLt x1 0SNoLe 0 (mul_SNo x0 x1) (proof)
Known neg_mul_SNo_Ltneg_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt x0 0SNo x1SNo x2SNoLt x2 x1SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem nonpos_mul_SNo_Lenonpos_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe x0 0SNo x1SNo x2SNoLe x2 x1SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2) (proof)
Param SepSep : ι(ιο) → ι
Definition SNoL_posSNoL_pos := λ x0 . Sep (SNoL x0) (SNoLt 0)
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known mul_SNo_pos_negmul_SNo_pos_neg : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt x1 0SNoLt (mul_SNo x0 x1) 0
Theorem SNo_recip_pos_posSNo_recip_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0mul_SNo x0 x1 = 1SNoLt 0 x1 (proof)
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known add_SNo_minus_Lt1add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_minus_Lt2badd_SNo_minus_Lt2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x2 x1) x0SNoLt x2 (add_SNo x0 (minus_SNo x1))
Known add_SNo_minus_Lt1badd_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Theorem SNo_recip_lem1SNo_recip_lem1 : ∀ x0 x1 x2 x3 x4 . SNo x0SNoLt 0 x0x1SNoL_pos x0SNo x2mul_SNo x1 x2 = 1SNo x3SNoLt (mul_SNo x0 x3) 1SNo x4add_SNo 1 (minus_SNo (mul_SNo x0 x4)) = mul_SNo (add_SNo 1 (minus_SNo (mul_SNo x0 x3))) (mul_SNo (add_SNo x1 (minus_SNo x0)) x2)SNoLt 1 (mul_SNo x0 x4) (proof)
Known add_SNo_minus_Lt2add_SNo_minus_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x2 (add_SNo x0 (minus_SNo x1))SNoLt (add_SNo x2 x1) x0
Theorem SNo_recip_lem2SNo_recip_lem2 : ∀ x0 x1 x2 x3 x4 . SNo x0SNoLt 0 x0x1SNoL_pos x0SNo x2mul_SNo x1 x2 = 1SNo x3SNoLt 1 (mul_SNo x0 x3)SNo x4add_SNo 1 (minus_SNo (mul_SNo x0 x4)) = mul_SNo (add_SNo 1 (minus_SNo (mul_SNo x0 x3))) (mul_SNo (add_SNo x1 (minus_SNo x0)) x2)SNoLt (mul_SNo x0 x4) 1 (proof)
Theorem SNo_recip_lem3SNo_recip_lem3 : ∀ x0 x1 x2 x3 x4 . SNo x0SNoLt 0 x0x1SNoR x0SNo x2mul_SNo x1 x2 = 1SNo x3SNoLt (mul_SNo x0 x3) 1SNo x4add_SNo 1 (minus_SNo (mul_SNo x0 x4)) = mul_SNo (add_SNo 1 (minus_SNo (mul_SNo x0 x3))) (mul_SNo (add_SNo x1 (minus_SNo x0)) x2)SNoLt (mul_SNo x0 x4) 1 (proof)
Theorem SNo_recip_lem4SNo_recip_lem4 : ∀ x0 x1 x2 x3 x4 . SNo x0SNoLt 0 x0x1SNoR x0SNo x2mul_SNo x1 x2 = 1SNo x3SNoLt 1 (mul_SNo x0 x3)SNo x4add_SNo 1 (minus_SNo (mul_SNo x0 x4)) = mul_SNo (add_SNo 1 (minus_SNo (mul_SNo x0 x3))) (mul_SNo (add_SNo x1 (minus_SNo x0)) x2)SNoLt 1 (mul_SNo x0 x4) (proof)
Definition SNo_recipauxsetSNo_recipauxset := λ x0 x1 x2 . λ x3 : ι → ι . famunion x0 (λ x4 . {mul_SNo (add_SNo 1 (mul_SNo (add_SNo x5 (minus_SNo x1)) x4)) (x3 x5)|x5 ∈ x2})
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem SNo_recipauxset_ISNo_recipauxset_I : ∀ x0 x1 x2 . ∀ x3 : ι → ι . ∀ x4 . x4x0∀ x5 . x5x2mul_SNo (add_SNo 1 (mul_SNo (add_SNo x5 (minus_SNo x1)) x4)) (x3 x5)SNo_recipauxset x0 x1 x2 x3 (proof)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Theorem SNo_recipauxset_ESNo_recipauxset_E : ∀ x0 x1 x2 . ∀ x3 : ι → ι . ∀ x4 . x4SNo_recipauxset x0 x1 x2 x3∀ x5 : ο . (∀ x6 . x6x0∀ x7 . x7x2x4 = mul_SNo (add_SNo 1 (mul_SNo (add_SNo x7 (minus_SNo x1)) x6)) (x3 x7)x5)x5 (proof)
Known ReplEq_extReplEq_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)prim5 x0 x1 = prim5 x0 x2
Theorem SNo_recipauxset_extSNo_recipauxset_ext : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι . (∀ x5 . x5x2x3 x5 = x4 x5)SNo_recipauxset x0 x1 x2 x3 = SNo_recipauxset x0 x1 x2 x4 (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param SingSing : ιι
Param apap : ιιι
Definition SNo_recipauxSNo_recipaux := λ x0 . λ x1 : ι → ι . nat_primrec (lam 2 (λ x2 . If_i (x2 = 0) (Sing 0) 0)) (λ x2 x3 . lam 2 (λ x4 . If_i (x4 = 0) (binunion (binunion (ap x3 0) (SNo_recipauxset (ap x3 0) x0 (SNoR x0) x1)) (SNo_recipauxset (ap x3 1) x0 (SNoL_pos x0) x1)) (binunion (binunion (ap x3 1) (SNo_recipauxset (ap x3 0) x0 (SNoL_pos x0) x1)) (SNo_recipauxset (ap x3 1) x0 (SNoR x0) x1))))
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem SNo_recipaux_0SNo_recipaux_0 : ∀ x0 . ∀ x1 : ι → ι . SNo_recipaux x0 x1 0 = lam 2 (λ x3 . If_i (x3 = 0) (Sing 0) 0) (proof)
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Theorem SNo_recipaux_SSNo_recipaux_S : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2SNo_recipaux x0 x1 (ordsucc x2) = lam 2 (λ x4 . If_i (x4 = 0) (binunion (binunion (ap (SNo_recipaux x0 x1 x2) 0) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 0) x0 (SNoR x0) x1)) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 1) x0 (SNoL_pos x0) x1)) (binunion (binunion (ap (SNo_recipaux x0 x1 x2) 1) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 0) x0 (SNoL_pos x0) x1)) (SNo_recipauxset (ap (SNo_recipaux x0 x1 x2) 1) x0 (SNoR x0) x1))) (proof)
Param SNoS_SNoS_ : ιι
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known SNo_foilSNo_foil : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (mul_SNo x0 x2) (add_SNo (mul_SNo x0 x3) (add_SNo (mul_SNo x1 x2) (mul_SNo x1 x3)))
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Theorem SNo_recipaux_lem1SNo_recipaux_lem1 : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 : ι → ι . (∀ x2 . x2SNoS_ (SNoLev x0)SNoLt 0 x2and (SNo (x1 x2)) (mul_SNo x2 (x1 x2) = 1))∀ x2 . nat_p x2and (∀ x3 . x3ap (SNo_recipaux x0 x1 x2) 0and (SNo x3) (SNoLt (mul_SNo x0 x3) 1)) (∀ x3 . x3ap (SNo_recipaux x0 x1 x2) 1and (SNo x3) (SNoLt 1 (mul_SNo x0 x3))) (proof)
Param omegaomega : ι
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem SNo_recipaux_lem2SNo_recipaux_lem2 : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 : ι → ι . (∀ x2 . x2SNoS_ (SNoLev x0)SNoLt 0 x2and (SNo (x1 x2)) (mul_SNo x2 (x1 x2) = 1))SNoCutP (famunion omega (λ x2 . ap (SNo_recipaux x0 x1 x2) 0)) (famunion omega (λ x2 . ap (SNo_recipaux x0 x1 x2) 1)) (proof)
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Theorem SNo_recipaux_extSNo_recipaux_ext : ∀ x0 . SNo x0∀ x1 x2 : ι → ι . (∀ x3 . x3SNoS_ (SNoLev x0)x1 x3 = x2 x3)∀ x3 . nat_p x3SNo_recipaux x0 x1 x3 = SNo_recipaux x0 x2 x3 (proof)
Param SNo_rec_iSNo_rec_i : (ι(ιι) → ι) → ιι
Definition recip_SNo_posrecip_SNo_pos := SNo_rec_i (λ x0 . λ x1 : ι → ι . SNoCut (famunion omega (λ x2 . ap (SNo_recipaux x0 x1 x2) 0)) (famunion omega (λ x2 . ap (SNo_recipaux x0 x1 x2) 1)))
Known SNo_rec_i_eqSNo_rec_i_eq : ∀ x0 : ι → (ι → ι) → ι . (∀ x1 . SNo x1∀ x2 x3 : ι → ι . (∀ x4 . x4SNoS_ (SNoLev x1)x2 x4 = x3 x4)x0 x1 x2 = x0 x1 x3)∀ x1 . SNo x1SNo_rec_i x0 x1 = x0 x1 (SNo_rec_i x0)
Theorem recip_SNo_pos_eqrecip_SNo_pos_eq : ∀ x0 . SNo x0recip_SNo_pos x0 = SNoCut (famunion omega (λ x2 . ap (SNo_recipaux x0 recip_SNo_pos x2) 0)) (famunion omega (λ x2 . ap (SNo_recipaux x0 recip_SNo_pos x2) 1)) (proof)
Definition recip_SNorecip_SNo := λ x0 . If_i (SNoLt 0 x0) (recip_SNo_pos x0) (If_i (SNoLt x0 0) (minus_SNo (recip_SNo_pos (minus_SNo x0))) 0)
Definition div_SNodiv_SNo := λ x0 x1 . mul_SNo x0 (recip_SNo x1)
Definition SNoL_nonnegSNoL_nonneg := λ x0 . Sep (SNoL x0) (SNoLe 0)
Known Empty_eqEmpty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0
Theorem Sep_EmptySep_Empty : ∀ x0 : ι → ο . Sep 0 x0 = 0 (proof)
Known SNoL_0SNoL_0 : SNoL 0 = 0
Theorem SNoL_nonneg_0SNoL_nonneg_0 : SNoL_nonneg 0 = 0 (proof)
Known SNoL_1SNoL_1 : SNoL 1 = 1
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Theorem SNoL_nonneg_1SNoL_nonneg_1 : SNoL_nonneg 1 = 1 (proof)
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Definition SNo_sqrtauxsetSNo_sqrtauxset := λ x0 x1 x2 . famunion x0 (λ x3 . {div_SNo (add_SNo x2 (mul_SNo x3 x4)) (add_SNo x3 x4)|x4 ∈ x1,SNoLt 0 (add_SNo x3 x4)})
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Theorem SNo_sqrtauxset_ISNo_sqrtauxset_I : ∀ x0 x1 x2 x3 . x3x0∀ x4 . x4x1SNoLt 0 (add_SNo x3 x4)div_SNo (add_SNo x2 (mul_SNo x3 x4)) (add_SNo x3 x4)SNo_sqrtauxset x0 x1 x2 (proof)
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Theorem SNo_sqrtauxset_ESNo_sqrtauxset_E : ∀ x0 x1 x2 x3 . x3SNo_sqrtauxset x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0∀ x6 . x6x1SNoLt 0 (add_SNo x5 x6)x3 = div_SNo (add_SNo x2 (mul_SNo x5 x6)) (add_SNo x5 x6)x4)x4 (proof)
Theorem SNo_sqrtauxset_0SNo_sqrtauxset_0 : ∀ x0 x1 . SNo_sqrtauxset 0 x0 x1 = 0 (proof)
Theorem SNo_sqrtauxset_0'SNo_sqrtauxset_0 : ∀ x0 x1 . SNo_sqrtauxset x0 0 x1 = 0 (proof)
Definition SNo_sqrtauxSNo_sqrtaux := λ x0 . λ x1 : ι → ι . nat_primrec (lam 2 (λ x2 . If_i (x2 = 0) (prim5 (SNoL_nonneg x0) x1) (prim5 (SNoR x0) x1))) (λ x2 x3 . lam 2 (λ x4 . If_i (x4 = 0) (binunion (ap x3 0) (SNo_sqrtauxset (ap x3 0) (ap x3 1) x0)) (binunion (binunion (ap x3 1) (SNo_sqrtauxset (ap x3 0) (ap x3 0) x0)) (SNo_sqrtauxset (ap x3 1) (ap x3 1) x0))))
Theorem SNo_sqrtaux_0SNo_sqrtaux_0 : ∀ x0 . ∀ x1 : ι → ι . SNo_sqrtaux x0 x1 0 = lam 2 (λ x3 . If_i (x3 = 0) (prim5 (SNoL_nonneg x0) x1) (prim5 (SNoR x0) x1)) (proof)
Theorem SNo_sqrtaux_SSNo_sqrtaux_S : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2SNo_sqrtaux x0 x1 (ordsucc x2) = lam 2 (λ x4 . If_i (x4 = 0) (binunion (ap (SNo_sqrtaux x0 x1 x2) 0) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 0) (ap (SNo_sqrtaux x0 x1 x2) 1) x0)) (binunion (binunion (ap (SNo_sqrtaux x0 x1 x2) 1) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 0) (ap (SNo_sqrtaux x0 x1 x2) 0) x0)) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 1) (ap (SNo_sqrtaux x0 x1 x2) 1) x0))) (proof)
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known binunion_Subq_1binunion_Subq_1 : ∀ x0 x1 . x0binunion x0 x1
Theorem SNo_sqrtaux_mon_lemSNo_sqrtaux_mon_lem : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2∀ x3 . nat_p x3and (ap (SNo_sqrtaux x0 x1 x2) 0ap (SNo_sqrtaux x0 x1 (add_nat x2 x3)) 0) (ap (SNo_sqrtaux x0 x1 x2) 1ap (SNo_sqrtaux x0 x1 (add_nat x2 x3)) 1) (proof)
Known add_nat_comadd_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0
Theorem SNo_sqrtaux_monSNo_sqrtaux_mon : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2∀ x3 . nat_p x3x2x3and (ap (SNo_sqrtaux x0 x1 x2) 0ap (SNo_sqrtaux x0 x1 x3) 0) (ap (SNo_sqrtaux x0 x1 x2) 1ap (SNo_sqrtaux x0 x1 x3) 1) (proof)
Theorem SNo_sqrtaux_extSNo_sqrtaux_ext : ∀ x0 . SNo x0∀ x1 x2 : ι → ι . (∀ x3 . x3SNoS_ (SNoLev x0)x1 x3 = x2 x3)∀ x3 . nat_p x3SNo_sqrtaux x0 x1 x3 = SNo_sqrtaux x0 x2 x3 (proof)
Definition sqrt_SNo_nonnegsqrt_SNo_nonneg := SNo_rec_i (λ x0 . λ x1 : ι → ι . SNoCut (famunion omega (λ x2 . ap (SNo_sqrtaux x0 x1 x2) 0)) (famunion omega (λ x2 . ap (SNo_sqrtaux x0 x1 x2) 1)))
Theorem sqrt_SNo_nonneg_eqsqrt_SNo_nonneg_eq : ∀ x0 . SNo x0sqrt_SNo_nonneg x0 = SNoCut (famunion omega (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 0)) (famunion omega (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 1)) (proof)

previous assets