Search for blocks/addresses/...
Proofgold Address
address
PUfBi5GAofM1oM96PNzdacVW8dkWbvqBDvg
total
0
mg
-
conjpub
-
current assets
cf868..
/
e08b1..
bday:
3879
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Param
91630..
:
ι
→
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Known
3bafe..
:
4a7ef..
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Known
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
6351a..
:
not
(
TransSet
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Theorem
39b19..
:
not
(
ordinal
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Param
0ac37..
:
ι
→
ι
→
ι
Definition
15418..
:=
λ x0 x1 .
0ac37..
x0
(
91630..
x1
)
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Known
287ca..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
x2
(
0ac37..
x0
x1
)
Theorem
aef25..
:
∀ x0 .
not
(
ordinal
(
15418..
x0
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Theorem
ada38..
:
∀ x0 x1 .
ordinal
x0
⟶
nIn
(
15418..
x1
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x0
(proof)
Known
9ac87..
:
4ae4a..
4a7ef..
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Theorem
b3b5f..
:
nIn
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
91630..
(
91630..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Definition
472ec..
:=
λ x0 .
0ac37..
x0
(
94f9e..
x0
(
λ x1 .
15418..
x1
(
91630..
(
4ae4a..
4a7ef..
)
)
)
)
Param
exactly1of2
:
ο
→
ο
→
ο
Definition
1beb9..
:=
λ x0 x1 .
and
(
Subq
x1
(
472ec..
x0
)
)
(
∀ x2 .
prim1
x2
x0
⟶
exactly1of2
(
prim1
(
15418..
x2
(
91630..
(
4ae4a..
4a7ef..
)
)
)
x1
)
(
prim1
x2
x1
)
)
Definition
80242..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
1beb9..
x2
x0
)
⟶
x1
)
⟶
x1
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
dd5e7..
:
∀ x0 x1 .
80242..
x0
⟶
nIn
(
15418..
x1
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x0
(proof)
Definition
236dc..
:=
λ x0 x1 .
0ac37..
x0
(
94f9e..
x1
(
λ x2 .
15418..
x2
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Known
da962..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
(
0ac37..
x0
x1
)
Theorem
cd385..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
236dc..
x0
x1
=
236dc..
x2
x3
⟶
Subq
x0
x2
(proof)
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
513aa..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x2
⟶
236dc..
x0
x1
=
236dc..
x2
x3
⟶
x0
=
x2
(proof)
Theorem
de4dc..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
15418..
x2
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
15418..
x3
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
Subq
x2
x3
(proof)
Theorem
5a16f..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
15418..
x2
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
15418..
x3
(
91630..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
x2
=
x3
(proof)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
4999f..
:
∀ x0 x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
236dc..
x0
x1
=
236dc..
x2
x3
⟶
Subq
x1
x3
(proof)
Theorem
21331..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
236dc..
x0
x1
=
236dc..
x2
x3
⟶
x1
=
x3
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
d3c08..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
236dc..
x0
x1
=
236dc..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Known
d4dbc..
:
∀ x0 :
ι → ι
.
94f9e..
4a7ef..
x0
=
4a7ef..
Known
4d5c9..
:
∀ x0 .
0ac37..
x0
4a7ef..
=
x0
Theorem
a0d36..
:
∀ x0 .
236dc..
x0
4a7ef..
=
x0
(proof)
Definition
1013b..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
80242..
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
80242..
x4
)
(
x0
=
236dc..
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Theorem
746bb..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
1013b..
(
236dc..
x0
x1
)
(proof)
Theorem
d7ca5..
:
∀ x0 .
1013b..
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
80242..
x2
⟶
80242..
x3
⟶
x0
=
236dc..
x2
x3
⟶
x1
(
236dc..
x2
x3
)
)
⟶
x1
x0
(proof)
Known
ebb60..
:
80242..
4a7ef..
Theorem
6cab0..
:
∀ x0 .
80242..
x0
⟶
1013b..
x0
(proof)
Definition
f8050..
:=
236dc..
4a7ef..
(
4ae4a..
4a7ef..
)
Known
c8ed0..
:
80242..
(
4ae4a..
4a7ef..
)
Theorem
b4a76..
:
1013b..
f8050..
(proof)
Definition
ce322..
:=
λ x0 .
prim0
(
λ x1 .
and
(
80242..
x1
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
80242..
x3
)
(
x0
=
236dc..
x1
x3
)
⟶
x2
)
⟶
x2
)
)
Definition
f6a32..
:=
λ x0 .
prim0
(
λ x1 .
and
(
80242..
x1
)
(
x0
=
236dc..
(
ce322..
x0
)
x1
)
)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
a5a32..
:
∀ x0 .
1013b..
x0
⟶
and
(
80242..
(
ce322..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
80242..
x2
)
(
x0
=
236dc..
(
ce322..
x0
)
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
55f9f..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
ce322..
(
236dc..
x0
x1
)
=
x0
(proof)
Theorem
d89f9..
:
∀ x0 .
1013b..
x0
⟶
and
(
80242..
(
f6a32..
x0
)
)
(
x0
=
236dc..
(
ce322..
x0
)
(
f6a32..
x0
)
)
(proof)
Theorem
41b27..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
f6a32..
(
236dc..
x0
x1
)
=
x1
(proof)
Theorem
3a25a..
:
∀ x0 .
1013b..
x0
⟶
80242..
(
ce322..
x0
)
(proof)
Theorem
43fc2..
:
∀ x0 .
1013b..
x0
⟶
80242..
(
f6a32..
x0
)
(proof)
Theorem
501e2..
:
∀ x0 .
1013b..
x0
⟶
x0
=
236dc..
(
ce322..
x0
)
(
f6a32..
x0
)
(proof)
Theorem
facc5..
:
∀ x0 x1 .
1013b..
x0
⟶
1013b..
x1
⟶
ce322..
x0
=
ce322..
x1
⟶
f6a32..
x0
=
f6a32..
x1
⟶
x0
=
x1
(proof)
Param
bc82c..
:
ι
→
ι
→
ι
Definition
e37c0..
:=
λ x0 x1 .
236dc..
(
bc82c..
(
ce322..
x0
)
(
ce322..
x1
)
)
(
bc82c..
(
f6a32..
x0
)
(
f6a32..
x1
)
)
Param
e6316..
:
ι
→
ι
→
ι
Param
f4dc0..
:
ι
→
ι
Definition
7ce1c..
:=
λ x0 x1 .
236dc..
(
bc82c..
(
e6316..
(
ce322..
x0
)
(
ce322..
x1
)
)
(
f4dc0..
(
e6316..
(
f6a32..
x0
)
(
f6a32..
x1
)
)
)
)
(
bc82c..
(
e6316..
(
ce322..
x0
)
(
f6a32..
x1
)
)
(
e6316..
(
f6a32..
x0
)
(
ce322..
x1
)
)
)
Param
3b429..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
f74bd..
:
ι
Param
True
:
ο
Definition
aee35..
:=
3b429..
f74bd..
(
λ x0 .
f74bd..
)
(
λ x0 x1 .
True
)
236dc..
previous assets