Search for blocks/addresses/...

Proofgold Address

address
PUfEtVttKC3WebBJGz6JNWcvPzjzPqvss2Q
total
0
mg
-
conjpub
-
current assets
15ac9../f74e1.. bday: 11548 doc published by PrEBh..
Param unpack_p_iunpack_p_i : ι(ι(ιο) → ι) → ι
Param pack_ppack_p : ι(ιο) → ι
Param SepSep : ι(ιο) → ι
Param apap : ιιι
Definition 2d9d0.. := λ x0 x1 x2 x3 . unpack_p_i x0 (λ x4 . pack_p {x5 ∈ x4|ap x2 x5 = ap x3 x5})
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known unpack_p_i_equnpack_p_i_eq : ∀ x0 : ι → (ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_i (pack_p x1 x2) x0 = x0 x1 x2
Known pack_p_extpack_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))pack_p x0 x1 = pack_p x0 x2
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Theorem 49a9d.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 x3 x4 . 2d9d0.. (pack_p x0 x1) x2 x3 x4 = pack_p {x6 ∈ x0|ap x3 x6 = ap x4 x6} x1 (proof)
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Param UnaryPredHomHom_struct_p : ιιιο
Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11∀ x12 . x1 x11 x4 x12x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13x3 x11 x8 x4 x9 x13 = x12x13 = x10 x11 x12))
Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0x1x2x3x4x5x6x7and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6))
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Theorem 380d6.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)(∀ x1 x2 x3 x4 . x0 x1x0 x2UnaryPredHom x1 x2 x3UnaryPredHom x1 x2 x4x0 (2d9d0.. x1 x2 x3 x4))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 UnaryPredHom struct_id struct_comp x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Known pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1)
Theorem 56101..MetaCat_struct_p_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known caa5e..MetaCat_struct_p : MetaCat struct_p UnaryPredHom struct_id struct_comp
Definition MetaCat_pullback_ppullback_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (x0 x9)) (x1 x9 x4 x10)) (x1 x9 x5 x11)) (x3 x9 x4 x6 x7 x10 = x3 x9 x5 x6 x8 x11)) (∀ x13 . x0 x13∀ x14 . x1 x13 x4 x14∀ x15 . x1 x13 x5 x15x3 x13 x4 x6 x7 x14 = x3 x13 x5 x6 x8 x15and (and (and (x1 x13 x9 (x12 x13 x14 x15)) (x3 x13 x9 x4 x10 (x12 x13 x14 x15) = x14)) (x3 x13 x9 x5 x11 (x12 x13 x14 x15) = x15)) (∀ x16 . x1 x13 x9 x16x3 x13 x9 x4 x10 x16 = x14x3 x13 x9 x5 x11 x16 = x15x16 = x12 x13 x14 x15))
Definition MetaCat_pullback_struct_ppullback_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x8 x9 x10 . x0 x8x0 x9x0 x10∀ x11 x12 . x1 x8 x10 x11x1 x9 x10 x12MetaCat_pullback_p x0 x1 x2 x3 x8 x9 x10 x11 x12 (x4 x8 x9 x10 x11 x12) (x5 x8 x9 x10 x11 x12) (x6 x8 x9 x10 x11 x12) (x7 x8 x9 x10 x11 x12)
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Known 4f9ac..MetaCat_struct_p_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Theorem 8ba3f..MetaCat_struct_p_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param PtdPredstruct_p_nonempty : ιο
Param ordsuccordsucc : ιι
Definition TrueTrue := ∀ x0 : ο . x0x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known d8d91.. : ∀ x0 . PtdPred x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . ∀ x4 . x4x2x3 x4x1 (pack_p x2 x3))x1 x0
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known In_1_2In_1_2 : 12
Known In_0_2In_0_2 : 02
Known 93af6.. : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 x3)x2)x2)PtdPred (pack_p x0 x1)
Known TrueITrueI : True
Known In_0_1In_0_1 : 01
Theorem 6eec9.. : not (∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0) (proof)
Theorem 4b38a.. : not (∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0) (proof)

previous assets