Search for blocks/addresses/...
Proofgold Address
address
PUfRNsrqbQAJLqMJuFcM4oGqgsecKPoT9rW
total
0
mg
-
conjpub
-
current assets
3cd65..
/
b5eb2..
bday:
4972
doc published by
Pr6Pc..
Param
and
and
:
ο
→
ο
→
ο
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
surj
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
omega
omega
:
ι
Param
ccad8..
:
ι
→
ι
→
ο
Definition
e93bf..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
ccad8..
x0
x2
)
⟶
x1
)
⟶
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
f9373..
:=
λ x0 .
not
(
e93bf..
x0
)
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Param
ordsucc
ordsucc
:
ι
→
ι
Param
or
or
:
ο
→
ο
→
ο
Definition
prime_nat
prime_nat
:=
λ x0 .
and
(
and
(
x0
∈
omega
)
(
1
∈
x0
)
)
(
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
x0
⟶
or
(
x1
=
1
)
(
x1
=
x0
)
)
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
coprime_nat
coprime_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 .
x2
∈
setminus
omega
1
⟶
divides_nat
x2
x0
⟶
divides_nat
x2
x1
⟶
x2
=
1
)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Definition
b3e62..
equiv_nat_mod
:=
λ x0 x1 x2 .
and
(
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
x2
∈
omega
)
)
(
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x0
(
mul_nat
x4
x2
)
=
x1
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x1
(
mul_nat
x4
x2
)
=
x0
)
⟶
x3
)
⟶
x3
)
)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
exp_nat
exp_nat
:=
λ x0 .
nat_primrec
1
(
λ x1 .
mul_nat
x0
)
Definition
even_nat
even_nat
:=
λ x0 .
and
(
x0
∈
omega
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
x0
=
mul_nat
2
x2
)
⟶
x1
)
⟶
x1
)
Definition
odd_nat
odd_nat
:=
λ x0 .
and
(
x0
∈
omega
)
(
∀ x1 .
x1
∈
omega
⟶
x0
=
mul_nat
2
x1
⟶
∀ x2 : ο .
x2
)
Definition
nat_factorial
nat_factorial
:=
nat_primrec
1
(
λ x0 .
mul_nat
(
ordsucc
x0
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
aa403..
:=
λ x0 .
ap
(
nat_primrec
(
lam
omega
(
λ x1 .
If_i
(
x1
=
0
)
1
0
)
)
(
λ x1 x2 .
lam
omega
(
λ x3 .
If_i
(
x3
=
0
)
1
(
add_nat
(
ap
x2
(
prim3
x3
)
)
(
ap
x2
x3
)
)
)
)
x0
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
9ae2c..
:=
λ x0 .
prim0
(
λ x1 .
and
(
x1
∈
omega
)
(
ccad8..
x1
{x2 ∈
ordsucc
x0
|
and
(
0
∈
x2
)
(
coprime_nat
x2
x0
)
}
)
)
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
4f8b9..
:=
λ x0 x1 .
div_SNo
(
nat_factorial
x0
)
(
mul_SNo
(
nat_factorial
(
add_SNo
x0
(
minus_SNo
x1
)
)
)
(
nat_factorial
x1
)
)
Param
int_alt1
int
:
ι
Definition
divides_int_alt1
divides_int
:=
λ x0 x1 .
and
(
and
(
x0
∈
int_alt1
)
(
x1
∈
int_alt1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
int_alt1
)
(
mul_SNo
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Definition
a0bc4..
equiv_int_mod
:=
λ x0 x1 x2 .
and
(
and
(
and
(
x0
∈
int_alt1
)
(
x1
∈
int_alt1
)
)
(
x2
∈
setminus
omega
1
)
)
(
divides_int_alt1
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
)
Definition
76fc5..
coprime_int
:=
λ x0 x1 .
and
(
and
(
x0
∈
int_alt1
)
(
x1
∈
int_alt1
)
)
(
∀ x2 .
x2
∈
setminus
omega
1
⟶
divides_int_alt1
x2
x0
⟶
divides_int_alt1
x2
x1
⟶
x2
=
1
)
Definition
exp_SNo_nat
exp_SNo_nat
:=
λ x0 .
nat_primrec
1
(
λ x1 .
mul_SNo
x0
)
Param
explicit_Nats
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Param
explicit_Nats_primrec
explicit_Nats_primrec
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
explicit_Nats_one_plus
explicit_Nats_one_plus
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
Param
explicit_Nats_one_plus
explicit_Nats_one_plus
:
ι
→
ι
→
(
ι
→
ι
) →
ι
→
ι
→
ι
Definition
explicit_Nats_one_mult_alt
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
explicit_Nats_primrec
x0
x1
x2
x3
(
λ x4 .
explicit_Nats_one_plus
x0
x1
x2
x3
)
Definition
explicit_Nats_lt
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
x3
∈
x0
)
(
x4
∈
x0
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x6
x3
=
x4
)
⟶
x5
)
⟶
x5
)
Definition
75de2..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
and
(
x3
∈
x0
)
(
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_lt
x0
x1
x2
x4
x3
⟶
or
(
x4
=
x1
)
(
x4
=
x3
)
)
Definition
explicit_Nats_max_is_one
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
x3
∈
x0
)
(
x4
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
explicit_Nats_lt
x0
x1
x2
x5
x3
⟶
explicit_Nats_lt
x0
x1
x2
x5
x4
⟶
x5
=
1
)
Definition
a1fba..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 x5 .
and
(
and
(
and
(
x3
∈
x0
)
(
x4
∈
x0
)
)
(
x5
∈
x0
)
)
(
or
(
or
(
x3
=
x4
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x3
(
explicit_Nats_one_plus
x0
x1
x2
x7
x5
)
=
x4
)
⟶
x6
)
⟶
x6
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x4
(
explicit_Nats_one_plus
x0
x1
x2
x7
x5
)
=
x3
)
⟶
x6
)
⟶
x6
)
)
Definition
explicit_Nats_one_lt
explicit_Nats_one_lt
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
x3
∈
x0
)
(
x4
∈
x0
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
Definition
explicit_Nats_one_le
explicit_Nats_one_le
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
and
(
and
(
x3
∈
x0
)
(
x4
∈
x0
)
)
(
or
(
x3
=
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
explicit_Nats_one_plus
x0
x1
x2
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
)
Definition
e6fc1..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
and
(
x3
∈
x0
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x3
=
explicit_Nats_one_plus
x0
x1
x2
(
x2
x1
)
x5
)
⟶
x4
)
⟶
x4
)
Definition
e7d21..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
and
(
x3
∈
x0
)
(
∀ x4 .
x4
∈
x0
⟶
x3
=
explicit_Nats_one_plus
x0
x1
x2
(
x2
x1
)
x4
⟶
∀ x5 : ο .
x5
)
Definition
9ff99..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
explicit_Nats_primrec
x0
x1
x2
x1
(
λ x3 x4 .
If_i
(
and
(
x3
=
x1
⟶
∀ x5 : ο .
x5
)
(
explicit_Nats_max_is_one
x0
x1
x2
x3
x3
)
)
(
x2
x4
)
x4
)
previous assets