Search for blocks/addresses/...
Proofgold Address
address
PUfbdqmpn3MhRsED5t8SHPx1MS7QYfuoyJA
total
0
mg
-
conjpub
-
current assets
bef4a..
/
f9c4c..
bday:
18074
doc published by
Pr4zB..
Definition
Church17_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x18
)
⟶
x1
x0
Theorem
e70c8..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x0
)
(proof)
Theorem
1b7f9..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x1
)
(proof)
Theorem
25b64..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x2
)
(proof)
Theorem
9e7eb..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x3
)
(proof)
Theorem
51a81..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x4
)
(proof)
Theorem
e224e..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x5
)
(proof)
Theorem
5d397..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x6
)
(proof)
Theorem
3b0d1..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x7
)
(proof)
Theorem
e7def..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x8
)
(proof)
Theorem
a8b9a..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x9
)
(proof)
Theorem
4f699..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x10
)
(proof)
Theorem
712d3..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x11
)
(proof)
Theorem
d5e0f..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x12
)
(proof)
Theorem
51598..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x13
)
(proof)
Theorem
15dad..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x14
)
(proof)
Theorem
7e8b2..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x15
)
(proof)
Theorem
02267..
:
Church17_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
x16
)
(proof)
Definition
TwoRamseyGraph_4_4_Church17
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
)
(
x1
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
)
(
x1
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x2
)
(
x1
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
)
(
x1
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x2
x3
x2
x2
x3
)
Theorem
ba8e9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
x1
x0
(proof)
Definition
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
Theorem
f6e2e..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
x0
)
(proof)
Theorem
c5dbb..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
x0
)
(
Church17_perm_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0
x1
)
(proof)
Definition
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
Theorem
e9109..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
x0
)
(proof)
Theorem
f730a..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
x0
)
(
Church17_perm_2_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1
x1
)
(proof)
Definition
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x0
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x1
x2
x3
Theorem
efbb9..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
(
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
x0
)
(proof)
Theorem
b6d33..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_p
x1
⟶
TwoRamseyGraph_4_4_Church17
x0
x1
=
TwoRamseyGraph_4_4_Church17
(
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
x0
)
(
Church17_perm_3_4_5_6_7_8_9_10_11_12_13_14_15_16_0_1_2
x1
)
(proof)
previous assets