Search for blocks/addresses/...
Proofgold Address
address
PUfeHzGjebgRs24vM8pEQtWyA1KmaRU329r
total
0
mg
-
conjpub
-
current assets
6c2e9..
/
52a71..
bday:
28313
doc published by
Pr5Zc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
068c4..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 x2 .
divides_nat
x0
x1
⟶
divides_nat
x0
x2
⟶
divides_nat
x0
(
add_SNo
x1
x2
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
77870..
:
∀ x0 x1 x2 x3 .
divides_nat
x0
x1
⟶
divides_nat
x0
x2
⟶
divides_nat
x0
x3
⟶
divides_nat
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
(proof)
Theorem
a82e4..
:
∀ x0 x1 x2 x3 x4 .
divides_nat
x0
x1
⟶
divides_nat
x0
x2
⟶
divides_nat
x0
x3
⟶
divides_nat
x0
x4
⟶
divides_nat
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
x4
)
)
)
(proof)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Param
SNo
SNo
:
ι
→
ο
Known
mul_SNo_com_4_inner_mid
mul_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
=
mul_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Theorem
a7e3e..
:
∀ x0 x1 x2 x3 .
divides_nat
x0
x2
⟶
divides_nat
x1
x3
⟶
divides_nat
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
(proof)
Param
int
int
:
ι
Definition
divides_int
divides_int
:=
λ x0 x1 .
and
(
and
(
x0
∈
int
)
(
x1
∈
int
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
int
)
(
mul_SNo
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_p_int
nat_p_int
:
∀ x0 .
nat_p
x0
⟶
x0
∈
int
Known
nat_1
nat_1
:
nat_p
1
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Theorem
divides_int_ref
divides_int_ref
:
∀ x0 .
x0
∈
int
⟶
divides_int
x0
x0
(proof)
Known
nat_0
nat_0
:
nat_p
0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Theorem
divides_int_0
divides_int_0
:
∀ x0 .
x0
∈
int
⟶
divides_int
x0
0
(proof)
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Theorem
divides_int_add_SNo
divides_int_add_SNo
:
∀ x0 x1 x2 .
divides_int
x0
x1
⟶
divides_int
x0
x2
⟶
divides_int
x0
(
add_SNo
x1
x2
)
(proof)
Theorem
divides_int_add_SNo_3
:
∀ x0 x1 x2 x3 .
divides_int
x0
x1
⟶
divides_int
x0
x2
⟶
divides_int
x0
x3
⟶
divides_int
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
(proof)
Theorem
divides_int_add_SNo_4
:
∀ x0 x1 x2 x3 x4 .
divides_int
x0
x1
⟶
divides_int
x0
x2
⟶
divides_int
x0
x3
⟶
divides_int
x0
x4
⟶
divides_int
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
x4
)
)
)
(proof)
Known
int_mul_SNo
int_mul_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
mul_SNo
x0
x1
∈
int
Theorem
divides_int_mul_SNo
divides_int_mul_SNo
:
∀ x0 x1 x2 x3 .
divides_int
x0
x2
⟶
divides_int
x1
x3
⟶
divides_int
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
(proof)
Theorem
divides_nat_divides_int
divides_nat_divides_int
:
∀ x0 x1 .
divides_nat
x0
x1
⟶
divides_int
x0
x1
(proof)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
SNo_0
SNo_0
:
SNo
0
Known
84495..
:
∀ x0 .
nat_p
x0
⟶
SNoLe
0
x0
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
int_SNo_cases
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int
⟶
x0
x1
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_inv_impred
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_ordsucc_SNo_eq
ordinal_ordsucc_SNo_eq
:
∀ x0 .
ordinal
x0
⟶
ordsucc
x0
=
add_SNo
1
x0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
SNo_1
SNo_1
:
SNo
1
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
mul_SNo_nonneg_nonneg
mul_SNo_nonneg_nonneg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
0
x0
⟶
SNoLe
0
x1
⟶
SNoLe
0
(
mul_SNo
x0
x1
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
abdca..
:
∀ x0 .
nat_p
x0
⟶
divides_nat
x0
0
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Theorem
divides_int_divides_nat
divides_int_divides_nat
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
divides_int
x0
x1
⟶
divides_nat
x0
x1
(proof)
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Theorem
divides_int_minus_SNo
divides_int_minus_SNo
:
∀ x0 x1 .
divides_int
x0
x1
⟶
divides_int
x0
(
minus_SNo
x1
)
(proof)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
divides_int_minus_SNo_conv
:
∀ x0 x1 .
SNo
x1
⟶
divides_int
x0
(
minus_SNo
x1
)
⟶
divides_int
x0
x1
(proof)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
divides_int_diff_SNo_rev
:
∀ x0 x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
divides_int
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
divides_int
x0
(
add_SNo
x2
(
minus_SNo
x1
)
)
(proof)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Theorem
divides_int_mul_SNo_L
divides_int_mul_SNo_L
:
∀ x0 x1 x2 .
x2
∈
int
⟶
divides_int
x0
x1
⟶
divides_int
x0
(
mul_SNo
x1
x2
)
(proof)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Theorem
divides_int_mul_SNo_R
divides_int_mul_SNo_R
:
∀ x0 x1 x2 .
x2
∈
int
⟶
divides_int
x0
x1
⟶
divides_int
x0
(
mul_SNo
x2
x1
)
(proof)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
a3ea1..
:
∀ x0 x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
divides_int
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
divides_int
x0
(
add_SNo
(
mul_SNo
x1
x1
)
(
minus_SNo
(
mul_SNo
x2
x2
)
)
)
(proof)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Theorem
385cb..
:
∀ x0 x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
∀ x3 .
x3
∈
int
⟶
divides_int
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
divides_int
x0
(
add_SNo
x2
x3
)
⟶
divides_int
x0
(
add_SNo
x1
x3
)
(proof)
Theorem
b1639..
:
∀ x0 x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
∀ x3 .
x3
∈
int
⟶
divides_int
x0
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
divides_int
x0
(
add_SNo
x1
x2
)
⟶
divides_int
x0
(
add_SNo
x1
x3
)
(proof)
Known
add_SNo_com_3_0_1
add_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x1
(
add_SNo
x0
x2
)
Theorem
6248f..
:
∀ x0 x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
∀ x3 .
x3
∈
int
⟶
∀ x4 .
x4
∈
int
⟶
divides_int
x0
(
add_SNo
x2
(
minus_SNo
x3
)
)
⟶
divides_int
x0
(
add_SNo
x1
(
add_SNo
x3
x4
)
)
⟶
divides_int
x0
(
add_SNo
x1
(
add_SNo
x2
x4
)
)
(proof)
Theorem
5f8d5..
:
∀ x0 x1 .
x1
∈
int
⟶
∀ x2 .
x2
∈
int
⟶
divides_int
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
divides_int
x0
x2
⟶
divides_int
x0
x1
(proof)
previous assets