Search for blocks/addresses/...
Proofgold Address
address
PUgbQfEvTQFJ5YBBnwfEQfZjo1DXcc8YDTN
total
0
mg
-
conjpub
-
current assets
bb098..
/
2f68a..
bday:
4904
doc published by
Pr6Pc..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Known
Sigma_mon
Sigma_mon
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
⊆
x3
x4
)
⟶
lam
x0
x2
⊆
lam
x1
x3
Theorem
setprod_mon
setprod_mon
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 x3 .
x2
⊆
x3
⟶
setprod
x0
x2
⊆
setprod
x1
x3
(proof)
Known
Sigma_mon0
Sigma_mon0
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 :
ι → ι
.
lam
x0
x2
⊆
lam
x1
x2
Theorem
setprod_mon0
setprod_mon0
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 .
setprod
x0
x2
⊆
setprod
x1
x2
(proof)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Theorem
setprod_mon1
setprod_mon1
:
∀ x0 x1 x2 .
x1
⊆
x2
⟶
setprod
x0
x1
⊆
setprod
x0
x2
(proof)
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
proj0
proj0
:
ι
→
ι
Known
proj0_ap_0
proj0_ap_0
:
∀ x0 .
proj0
x0
=
ap
x0
0
Param
proj1
proj1
:
ι
→
ι
Known
proj1_ap_1
proj1_ap_1
:
∀ x0 .
proj1
x0
=
ap
x0
1
Known
pair_eta_Subq_proj
pair_eta_Subq_proj
:
∀ x0 .
setsum
(
proj0
x0
)
(
proj1
x0
)
⊆
x0
Theorem
pair_eta_Subq
pair_eta_Subq
:
∀ x0 .
setsum
(
ap
x0
0
)
(
ap
x0
1
)
⊆
x0
(proof)
Known
proj_Sigma_eta
proj_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
setsum
(
proj0
x2
)
(
proj1
x2
)
=
x2
Theorem
Sigma_eta
Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
setsum
(
ap
x2
0
)
(
ap
x2
1
)
=
x2
(proof)
Known
ReplEq_ext
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
prim5
x0
x1
=
prim5
x0
x2
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
ReplEq_setprod_ext
ReplEq_setprod_ext
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
{
x2
(
ap
x5
0
)
(
ap
x5
1
)
|x5 ∈
setprod
x0
x1
}
=
{
x3
(
ap
x5
0
)
(
ap
x5
1
)
|x5 ∈
setprod
x0
x1
}
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
tuple_p
tuple_p
:=
λ x0 x1 .
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
x2
=
setsum
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
exandE_i
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
lamE
lamE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
setsum
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
tuple_p_3_tuple
tuple_p_3_tuple
:
∀ x0 x1 x2 .
tuple_p
3
(
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
x1
x2
)
)
)
(proof)
Theorem
tuple_p_4_tuple
tuple_p_4_tuple
:
∀ x0 x1 x2 x3 .
tuple_p
4
(
lam
4
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
(
If_i
(
x4
=
2
)
x2
x3
)
)
)
)
(proof)
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
In_0_1
In_0_1
:
0
∈
1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Definition
pair_p
pair_p
:=
λ x0 .
setsum
(
ap
x0
0
)
(
ap
x0
1
)
=
x0
Known
PiE
PiE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
and
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
Param
Sing
Sing
:
ι
→
ι
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
apI
apI
:
∀ x0 x1 x2 .
setsum
x1
x2
∈
x0
⟶
x2
∈
ap
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
Subq_1_Sing0
Subq_1_Sing0
:
1
⊆
Sing
0
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Theorem
Pi_Power_1
Pi_Power_1
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim4
1
)
⟶
Pi
x0
x1
∈
prim4
1
(proof)
Known
PiI
PiI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
⟶
x2
∈
Pi
x0
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
beta0
beta0
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nIn
x2
x0
⟶
ap
(
lam
x0
x1
)
x2
=
0
Theorem
Pi_0_dom_mon
Pi_0_dom_mon
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
x0
⊆
x1
⟶
(
∀ x3 .
x3
∈
x1
⟶
nIn
x3
x0
⟶
0
∈
x2
x3
)
⟶
Pi
x0
x2
⊆
Pi
x1
x2
(proof)
Theorem
Pi_cod_mon
Pi_cod_mon
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
⊆
x2
x3
)
⟶
Pi
x0
x1
⊆
Pi
x0
x2
(proof)
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Theorem
Pi_0_mon
Pi_0_mon
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
⊆
x3
x4
)
⟶
x0
⊆
x1
⟶
(
∀ x4 .
x4
∈
x1
⟶
nIn
x4
x0
⟶
0
∈
x3
x4
)
⟶
Pi
x0
x2
⊆
Pi
x1
x3
(proof)
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
Sigma_eta_proj0_proj1
Sigma_eta_proj0_proj1
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
and
(
and
(
setsum
(
proj0
x2
)
(
proj1
x2
)
=
x2
)
(
proj0
x2
∈
x0
)
)
(
proj1
x2
∈
x1
(
proj0
x2
)
)
Known
tuple_pair
tuple_pair
:
∀ x0 x1 .
setsum
x0
x1
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
If_i_or
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
Known
lamI
lamI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
setsum
x2
x3
∈
lam
x0
x1
Known
In_0_2
In_0_2
:
0
∈
2
Known
In_1_2
In_1_2
:
1
∈
2
Known
pair_p_I2
pair_p_I2
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
and
(
pair_p
x1
)
(
ap
x1
0
∈
2
)
)
⟶
pair_p
x0
Theorem
setexp_2_eq
setexp_2_eq
:
∀ x0 .
setprod
x0
x0
=
setexp
x0
2
(proof)
Theorem
setexp_0_dom_mon
setexp_0_dom_mon
:
∀ x0 .
0
∈
x0
⟶
∀ x1 x2 .
x1
⊆
x2
⟶
setexp
x0
x1
⊆
setexp
x0
x2
(proof)
Theorem
setexp_0_mon
setexp_0_mon
:
∀ x0 x1 x2 x3 .
0
∈
x3
⟶
x2
⊆
x3
⟶
x0
⊆
x1
⟶
setexp
x2
x0
⊆
setexp
x3
x1
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Theorem
nat_in_setexp_mon
nat_in_setexp_mon
:
∀ x0 .
0
∈
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
x2
∈
x1
⟶
setexp
x0
x2
⊆
setexp
x0
x1
(proof)
Known
pair_tuple_fun
pair_tuple_fun
:
setsum
=
λ x1 x2 .
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
Known
pairI0
pairI0
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
setsum
0
x2
∈
setsum
x0
x1
Theorem
tupleI0
tupleI0
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
0
x2
)
∈
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
(proof)
Known
pairI1
pairI1
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
setsum
1
x2
∈
setsum
x0
x1
Theorem
tupleI1
tupleI1
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
1
x2
)
∈
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
(proof)
Known
pairE
pairE
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
setsum
0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
setsum
1
x4
)
⟶
x3
)
⟶
x3
)
Theorem
tupleE
tupleE
:
∀ x0 x1 x2 .
x2
∈
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
0
x4
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
1
x4
)
)
⟶
x3
)
⟶
x3
)
(proof)
Known
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Theorem
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
(proof)
Theorem
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
(proof)
Theorem
apI2
apI2
:
∀ x0 x1 x2 .
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
∈
x0
⟶
x2
∈
ap
x0
x1
(proof)
Known
apE
apE
:
∀ x0 x1 x2 .
x2
∈
ap
x0
x1
⟶
setsum
x1
x2
∈
x0
Theorem
apE2
apE2
:
∀ x0 x1 x2 .
x2
∈
ap
x0
x1
⟶
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
∈
x0
(proof)
Known
Empty_Subq_eq
Empty_Subq_eq
:
∀ x0 .
x0
⊆
0
⟶
x0
=
0
Theorem
ap_const_0
ap_const_0
:
∀ x0 .
ap
0
x0
=
0
(proof)
Known
tuple_2_eta
tuple_2_eta
:
∀ x0 x1 .
lam
2
(
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
)
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Theorem
tuple_2_in_A_2
tuple_2_in_A_2
:
∀ x0 x1 x2 .
x0
∈
x2
⟶
x1
∈
x2
⟶
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
∈
setexp
x2
2
(proof)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
PigeonHole_nat_bij
PigeonHole_nat_bij
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
Known
nat_2
nat_2
:
nat_p
2
Theorem
tuple_2_bij_2
tuple_2_bij_2
:
∀ x0 x1 .
x0
∈
2
⟶
x1
∈
2
⟶
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
bij
2
2
(
ap
(
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
x0
x1
)
)
)
(proof)
previous assets