vout |
---|
PrFK8../9aab1.. 0.01 barsTMU3T../1e951.. negprop ownership controlledby Pr4zB.. upto 0TMUHT../e3827.. negprop ownership controlledby Pr4zB.. upto 0TMZ1Q../cfe05.. negprop ownership controlledby Pr4zB.. upto 0TMEvQ../5599d.. negprop ownership controlledby Pr4zB.. upto 0TMcig../eda76.. negprop ownership controlledby Pr4zB.. upto 0TMSbc../a1d68.. negprop ownership controlledby Pr4zB.. upto 0TMRjg../40432.. negprop ownership controlledby Pr4zB.. upto 0TMT5K../942f9.. negprop ownership controlledby Pr4zB.. upto 0TMUwu../fb893.. negprop ownership controlledby Pr4zB.. upto 0TMRt3../f1dbc.. negprop ownership controlledby Pr4zB.. upto 0TMJW1../6bf20.. negprop ownership controlledby Pr4zB.. upto 0TMErg../c0a23.. negprop ownership controlledby Pr4zB.. upto 0TMGr3../f6742.. negprop ownership controlledby Pr4zB.. upto 0TMXAa../4dcf4.. negprop ownership controlledby Pr4zB.. upto 0TMGS4../dad3d.. negprop ownership controlledby Pr4zB.. upto 0TMWQT../14e5d.. negprop ownership controlledby Pr4zB.. upto 0TMMTW../79bcf.. negprop ownership controlledby Pr4zB.. upto 0TMFc9../63398.. negprop ownership controlledby Pr4zB.. upto 0TMQjj../433aa.. negprop ownership controlledby Pr4zB.. upto 0TMMHo../cb8ed.. negprop ownership controlledby Pr4zB.. upto 0TMPTE../ca17d.. ownership of 84f84.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMUNj../12d30.. ownership of f4f10.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMWJv../444cd.. ownership of 3de2e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMK56../9dfc3.. ownership of 7675d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMV4o../b2c96.. ownership of 41978.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMTnd../1d8f6.. ownership of 87e3c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMJ6q../e2d88.. ownership of 73405.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMHCR../a2e56.. ownership of 1c506.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMcxp../9855e.. ownership of eff2c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMKAd../cfbb5.. ownership of cc974.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMK7G../5eff5.. ownership of cd2fd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMLue../b0cf9.. ownership of b7709.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMHUS../e70eb.. ownership of 8b769.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMS5V../07e6b.. ownership of 998ac.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMMqa../fd902.. ownership of 95a55.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSbQ../a721f.. ownership of 4a26d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMbxd../f57ec.. ownership of e1864.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMGWg../b915d.. ownership of 9b0d4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMdAv../a87fc.. ownership of 33278.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZap../ed3f4.. ownership of b0e56.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSib../385ae.. ownership of fe972.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMYFa../745c6.. ownership of efe4e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMb2S../eac4b.. ownership of ce62b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMXuW../dba46.. ownership of d1fac.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMY6y../76932.. ownership of 7f909.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMTGd../8486f.. ownership of edae1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMH8C../ccc0d.. ownership of 69d43.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMQVQ../e2625.. ownership of 9579d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMdrn../2f971.. ownership of df26e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMdNB../d8505.. ownership of 8e31e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMYhj../54944.. ownership of 54668.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMNue../67e35.. ownership of 453f4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMU5S../89dda.. ownership of ff590.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMVSf../3a05f.. ownership of edbe3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMVHz../03a79.. ownership of 6bca8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMJWT../2ccab.. ownership of 2e14d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMGsG../15052.. ownership of 476b4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMX2B../4684b.. ownership of 53186.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZTR../66eaf.. ownership of 9df0e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMRN1../a8892.. ownership of ab581.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMMiR../6d99a.. ownership of 052c4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMT6e../1cbb4.. ownership of a3891.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMQVm../4d963.. ownership of 70922.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMcrJ../03948.. ownership of 7117a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUKgX../e31c3.. doc published by Pr4zB..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Param SubqSubq : ι → ι → οParam atleastpatleastp : ι → ι → οParam ordsuccordsucc : ι → ιDefinition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseKnown andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known a6a5a.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ ∀ x9 . x9 ⊆ x8 ⟶ atleastp 3 x9 ⟶ ∀ x10 : ο . (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ x10Known c14f6.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ ∀ x9 . x9 ⊆ x8 ⟶ atleastp 4 x9 ⟶ ∀ x10 : ο . (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x1 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x2 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x3 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x4 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x0 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x1 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x2 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x3 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ (x4 ∈ x9 ⟶ x5 ∈ x9 ⟶ x6 ∈ x9 ⟶ x7 ∈ x9 ⟶ x10) ⟶ x10Theorem 70922.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ (x0 = x1 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x2 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x2 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ ∀ x9 : ι → ι → ο . (∀ x10 : ο . x9 x0 x1 ⟶ x10) ⟶ (∀ x10 : ο . x9 x0 x2 ⟶ x10) ⟶ (∀ x10 : ο . x9 x1 x2 ⟶ x10) ⟶ (∀ x10 : ο . x9 x0 x3 ⟶ x10) ⟶ (∀ x10 : ο . x9 x1 x3 ⟶ x10) ⟶ x9 x2 x3 ⟶ (∀ x10 : ο . x9 x0 x4 ⟶ x10) ⟶ x9 x1 x4 ⟶ (∀ x10 : ο . x9 x2 x4 ⟶ x10) ⟶ x9 x3 x4 ⟶ (∀ x10 : ο . x9 x0 x5 ⟶ x10) ⟶ x9 x1 x5 ⟶ x9 x2 x5 ⟶ (∀ x10 : ο . x9 x3 x5 ⟶ x10) ⟶ (∀ x10 : ο . x9 x4 x5 ⟶ x10) ⟶ x9 x0 x6 ⟶ (∀ x10 : ο . x9 x1 x6 ⟶ x10) ⟶ (∀ x10 : ο . x9 x2 x6 ⟶ x10) ⟶ x9 x3 x6 ⟶ (∀ x10 : ο . x9 x4 x6 ⟶ x10) ⟶ x9 x5 x6 ⟶ x9 x0 x7 ⟶ (∀ x10 : ο . x9 x1 x7 ⟶ x10) ⟶ x9 x2 x7 ⟶ (∀ x10 : ο . x9 x3 x7 ⟶ x10) ⟶ x9 x4 x7 ⟶ (∀ x10 : ο . x9 x5 x7 ⟶ x10) ⟶ (∀ x10 : ο . x9 x6 x7 ⟶ x10) ⟶ and (∀ x10 . x10 ⊆ x8 ⟶ atleastp 3 x10 ⟶ ∀ x11 : ο . (∀ x12 . x12 ∈ x10 ⟶ ∀ x13 . x13 ∈ x10 ⟶ (x12 = x13 ⟶ ∀ x14 : ο . x14) ⟶ not (x9 x12 x13) ⟶ x11) ⟶ x11) (∀ x10 . x10 ⊆ x8 ⟶ atleastp 4 x10 ⟶ ∀ x11 : ο . (∀ x12 . x12 ∈ x10 ⟶ ∀ x13 . x13 ∈ x10 ⟶ (x12 = x13 ⟶ ∀ x14 : ο . x14) ⟶ x9 x12 x13 ⟶ x11) ⟶ x11) (proof)Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5 ⟶ x3 x5 x4) ⟶ or (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (atleastp x0 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ x3 x6 x7)) ⟶ x4) ⟶ x4) (∀ x4 : ο . (∀ x5 . and (x5 ⊆ x2) (and (atleastp x1 x5) (∀ x6 . x6 ∈ x5 ⟶ ∀ x7 . x7 ∈ x5 ⟶ (x6 = x7 ⟶ ∀ x8 : ο . x8) ⟶ not (x3 x6 x7))) ⟶ x4) ⟶ x4)Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem 052c4.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 . (∀ x9 . x9 ∈ x8 ⟶ ∀ x10 : ι → ο . x10 x0 ⟶ x10 x1 ⟶ x10 x2 ⟶ x10 x3 ⟶ x10 x4 ⟶ x10 x5 ⟶ x10 x6 ⟶ x10 x7 ⟶ x10 x9) ⟶ (x0 = x1 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x2 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x2 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x3 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x4 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x5 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x6 ⟶ ∀ x9 : ο . x9) ⟶ (x0 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x1 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x2 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x3 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x4 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x5 = x7 ⟶ ∀ x9 : ο . x9) ⟶ (x6 = x7 ⟶ ∀ x9 : ο . x9) ⟶ not (TwoRamseyProp_atleastp 3 4 x8) (proof)Param TwoRamseyPropTwoRamseyProp : ι → ι → ι → οKnown cases_8cases_8 : ∀ x0 . x0 ∈ 8 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 1 ⟶ x1 2 ⟶ x1 3 ⟶ x1 4 ⟶ x1 5 ⟶ x1 6 ⟶ x1 7 ⟶ x1 x0Known neq_0_1neq_0_1 : 0 = 1 ⟶ ∀ x0 : ο . x0Known neq_0_2neq_0_2 : 0 = 2 ⟶ ∀ x0 : ο . x0Known neq_1_2neq_1_2 : 1 = 2 ⟶ ∀ x0 : ο . x0Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1 ⟶ ∀ x2 : ο . x2) ⟶ x1 = x0 ⟶ ∀ x2 : ο . x2Known neq_3_0neq_3_0 : 3 = 0 ⟶ ∀ x0 : ο . x0Known neq_3_1neq_3_1 : 3 = 1 ⟶ ∀ x0 : ο . x0Known neq_3_2neq_3_2 : 3 = 2 ⟶ ∀ x0 : ο . x0Known neq_4_0neq_4_0 : 4 = 0 ⟶ ∀ x0 : ο . x0Known neq_4_1neq_4_1 : 4 = 1 ⟶ ∀ x0 : ο . x0Known neq_4_2neq_4_2 : 4 = 2 ⟶ ∀ x0 : ο . x0Known neq_4_3neq_4_3 : 4 = 3 ⟶ ∀ x0 : ο . x0Known neq_5_0neq_5_0 : 5 = 0 ⟶ ∀ x0 : ο . x0Known neq_5_1neq_5_1 : 5 = 1 ⟶ ∀ x0 : ο . x0Known neq_5_2neq_5_2 : 5 = 2 ⟶ ∀ x0 : ο . x0Known neq_5_3neq_5_3 : 5 = 3 ⟶ ∀ x0 : ο . x0Known neq_5_4neq_5_4 : 5 = 4 ⟶ ∀ x0 : ο . x0Known neq_6_0neq_6_0 : 6 = 0 ⟶ ∀ x0 : ο . x0Known neq_6_1neq_6_1 : 6 = 1 ⟶ ∀ x0 : ο . x0Known neq_6_2neq_6_2 : 6 = 2 ⟶ ∀ x0 : ο . x0Known neq_6_3neq_6_3 : 6 = 3 ⟶ ∀ x0 : ο . x0Known neq_6_4neq_6_4 : 6 = 4 ⟶ ∀ x0 : ο . x0Known neq_6_5neq_6_5 : 6 = 5 ⟶ ∀ x0 : ο . x0Known neq_7_0neq_7_0 : 7 = 0 ⟶ ∀ x0 : ο . x0Known neq_7_1neq_7_1 : 7 = 1 ⟶ ∀ x0 : ο . x0Known neq_7_2neq_7_2 : 7 = 2 ⟶ ∀ x0 : ο . x0Known neq_7_3neq_7_3 : 7 = 3 ⟶ ∀ x0 : ο . x0Known neq_7_4neq_7_4 : 7 = 4 ⟶ ∀ x0 : ο . x0Known neq_7_5neq_7_5 : 7 = 5 ⟶ ∀ x0 : ο . x0Known neq_7_6neq_7_6 : 7 = 6 ⟶ ∀ x0 : ο . x0Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4 ⟶ atleastp x1 x0 ⟶ atleastp x3 x2 ⟶ TwoRamseyProp_atleastp x1 x3 x4Known atleastp_ref : ∀ x0 . atleastp x0 x0Theorem not_TwoRamseyProp_3_4_8not_TwoRamseyProp_3_4_8 : not (TwoRamseyProp 3 4 8) (proof)Param UPairUPair : ι → ι → ιParam SingSing : ι → ιKnown In_Power_3_cases_impred : ∀ x0 . x0 ∈ prim4 3 ⟶ ∀ x1 : ο . (x0 = 0 ⟶ x1) ⟶ (x0 = 1 ⟶ x1) ⟶ (x0 = Sing 1 ⟶ x1) ⟶ (x0 = 2 ⟶ x1) ⟶ (x0 = Sing 2 ⟶ x1) ⟶ (x0 = UPair 0 2 ⟶ x1) ⟶ (x0 = UPair 1 2 ⟶ x1) ⟶ (x0 = 3 ⟶ x1) ⟶ x1Known not_Empty_eq_Sing : ∀ x0 . 0 = Sing x0 ⟶ ∀ x1 : ο . x1Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known nIn_not_eq_Sing : ∀ x0 x1 . nIn x0 x1 ⟶ x1 = Sing x0 ⟶ ∀ x2 : ο . x2Known In_irrefIn_irref : ∀ x0 . nIn x0 x0Known nIn_2_1nIn_2_1 : nIn 2 1Known neq_2_1neq_2_1 : 2 = 1 ⟶ ∀ x0 : ο . x0Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Known In_0_2In_0_2 : 0 ∈ 2Known not_Empty_eq_UPair : ∀ x0 x1 . 0 = UPair x0 x1 ⟶ ∀ x2 : ο . x2Known nIn_not_eq_UPair_2 : ∀ x0 x1 x2 . nIn x1 x2 ⟶ x2 = UPair x0 x1 ⟶ ∀ x3 : ο . x3Known nIn_not_eq_UPair_1 : ∀ x0 x1 x2 . nIn x0 x2 ⟶ x2 = UPair x0 x1 ⟶ ∀ x3 : ο . x3Known UPairEUPairE : ∀ x0 x1 x2 . x0 ∈ UPair x1 x2 ⟶ or (x0 = x1) (x0 = x2)Known neq_1_0neq_1_0 : 1 = 0 ⟶ ∀ x0 : ο . x0Known In_0_3In_0_3 : 0 ∈ 3Known In_1_3In_1_3 : 1 ∈ 3Theorem not_TwoRamseyProp_atleast_3_4_Power_3 : not (TwoRamseyProp_atleastp 3 4 (prim4 3)) (proof)Param nat_pnat_p : ι → οKnown nat_In_atleastp : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ atleastp x1 x0Known nat_5nat_5 : nat_p 5Known In_4_5In_4_5 : 4 ∈ 5Theorem 6bca8..not_TwoRamseyProp_3_5_Power_3 : not (TwoRamseyProp 3 5 (prim4 3)) (proof)Known nat_6nat_6 : nat_p 6Known In_4_6In_4_6 : 4 ∈ 6Theorem ff590..not_TwoRamseyProp_3_6_Power_3 : not (TwoRamseyProp 3 6 (prim4 3)) (proof)Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0 ⟶ nat_p (ordsucc x0)Theorem nat_7nat_7 : nat_p 7 (proof)Theorem nat_8nat_8 : nat_p 8 (proof)Theorem nat_9nat_9 : nat_p 9 (proof)Theorem nat_10nat_10 : nat_p 10 (proof)Known In_4_7In_4_7 : 4 ∈ 7Theorem 54668..not_TwoRamseyProp_3_7_Power_3 : not (TwoRamseyProp 3 7 (prim4 3)) (proof)Known In_4_8In_4_8 : 4 ∈ 8Theorem df26e..not_TwoRamseyProp_3_8_Power_3 : not (TwoRamseyProp 3 8 (prim4 3)) (proof)Known In_4_9In_4_9 : 4 ∈ 9Theorem 69d43..not_TwoRamseyProp_3_9_Power_3 : not (TwoRamseyProp 3 9 (prim4 3)) (proof)Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ ordsucc x1 ∈ ordsucc x0Known In_3_9In_3_9 : 3 ∈ 9Theorem 35ffd.. : 4 ∈ 10 (proof)Theorem 7f909..not_TwoRamseyProp_3_10_Power_3 : not (TwoRamseyProp 3 10 (prim4 3)) (proof)Known nat_4nat_4 : nat_p 4Known In_3_4In_3_4 : 3 ∈ 4Theorem ce62b..not_TwoRamseyProp_4_4_Power_3 : not (TwoRamseyProp 4 4 (prim4 3)) (proof)Theorem fe972..not_TwoRamseyProp_4_5_Power_3 : not (TwoRamseyProp 4 5 (prim4 3)) (proof)Theorem 33278..not_TwoRamseyProp_4_6_Power_3 : not (TwoRamseyProp 4 6 (prim4 3)) (proof)Theorem e1864..not_TwoRamseyProp_4_7_Power_3 : not (TwoRamseyProp 4 7 (prim4 3)) (proof)Theorem 95a55..not_TwoRamseyProp_4_8_Power_3 : not (TwoRamseyProp 4 8 (prim4 3)) (proof)Theorem 8b769..not_TwoRamseyProp_4_9_Power_3 : not (TwoRamseyProp 4 9 (prim4 3)) (proof)Known In_3_5In_3_5 : 3 ∈ 5Theorem cd2fd..not_TwoRamseyProp_5_5_Power_3 : not (TwoRamseyProp 5 5 (prim4 3)) (proof)Theorem eff2c..not_TwoRamseyProp_5_6_Power_3 : not (TwoRamseyProp 5 6 (prim4 3)) (proof)Theorem 73405..not_TwoRamseyProp_5_7_Power_3 : not (TwoRamseyProp 5 7 (prim4 3)) (proof)Theorem 41978..not_TwoRamseyProp_5_8_Power_3 : not (TwoRamseyProp 5 8 (prim4 3)) (proof)Known In_3_6In_3_6 : 3 ∈ 6Theorem 3de2e..not_TwoRamseyProp_6_6_Power_3 : not (TwoRamseyProp 6 6 (prim4 3)) (proof)Theorem 84f84..not_TwoRamseyProp_6_7_Power_3 : not (TwoRamseyProp 6 7 (prim4 3)) (proof) |
|