Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : ο . (wceq cvts (cmpt2 (λ x1 x2 . co cc cn cmap) (λ x1 x2 . cn0) (λ x1 x2 . cmpt (λ x3 . cc) (λ x3 . csu (co c1 (cv x2) cfz) (λ x4 . co (cfv (cv x4) (cv x1)) (cfv (co (co ci (co c2 cpi cmul) cmul) (co (cv x4) (cv x3) cmul) cmul) ce) cmul))))wral (λ x1 . wbr (co (cdc c1 cc0) (cdc c2 c7) cexp) (cv x1) clewrex (λ x2 . wrex (λ x3 . w3a (wral (λ x4 . wbr (cfv (cv x4) (cv x3)) (co c1 (cdp2 cc0 (cdp2 c7 (cdp2 c9 (cdp2 c9 (cdp2 c5 c5))))) cdp) cle) (λ x4 . cn)) (wral (λ x4 . wbr (cfv (cv x4) (cv x2)) (co c1 (cdp2 c4 (cdp2 c1 c4)) cdp) cle) (λ x4 . cn)) (wbr (co (co cc0 (cdp2 cc0 (cdp2 cc0 (cdp2 cc0 (cdp2 c4 (cdp2 c2 (cdp2 c2 (cdp2 c4 c8))))))) cdp) (co (cv x1) c2 cexp) cmul) (citg (λ x4 . co cc0 c1 cioo) (λ x4 . co (co (cfv (cv x4) (co (co cvma (cv x2) (cof cmul)) (cv x1) cvts)) (co (cfv (cv x4) (co (co cvma (cv x3) (cof cmul)) (cv x1) cvts)) c2 cexp) cmul) (cfv (co (co ci (co c2 cpi cmul) cmul) (co (cneg (cv x1)) (cv x4) cmul) cmul) ce) cmul)) cle)) (λ x3 . co (co cc0 cpnf cico) cn cmap)) (λ x2 . co (co cc0 cpnf cico) cn cmap)) (λ x1 . crab (λ x2 . wn (wbr c2 (cv x2) cdvds)) (λ x2 . cz))wral (λ x1 . wbr (cfv (cv x1) cchp) (co (co c1 (cdp2 cc0 (cdp2 c3 (cdp2 c8 (cdp2 c8 c3)))) cdp) (cv x1) cmul) clt) (λ x1 . crp)wral (λ x1 . wbr (co (cfv (cv x1) cchp) (cfv (cv x1) ccht) cmin) (co (co c1 (cdp2 c4 (cdp2 c2 (cdp2 c6 c2))) cdp) (cfv (cv x1) csqrt) cmul) clt) (λ x1 . crp)wceq cstrkg2d (cab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wa (wrex (λ x5 . wrex (λ x6 . wrex (λ x7 . wn (w3o (wcel (cv x7) (co (cv x5) (cv x6) (cv x4))) (wcel (cv x5) (co (cv x7) (cv x6) (cv x4))) (wcel (cv x6) (co (cv x5) (cv x7) (cv x4))))) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2)) (wral (λ x5 . wral (λ x6 . wral (λ x7 . wral (λ x8 . wral (λ x9 . wa (w3a (wceq (co (cv x5) (cv x8) (cv x3)) (co (cv x5) (cv x9) (cv x3))) (wceq (co (cv x6) (cv x8) (cv x3)) (co (cv x6) (cv x9) (cv x3))) (wceq (co (cv x7) (cv x8) (cv x3)) (co (cv x7) (cv x9) (cv x3)))) (wne (cv x8) (cv x9))w3o (wcel (cv x7) (co (cv x5) (cv x6) (cv x4))) (wcel (cv x5) (co (cv x7) (cv x6) (cv x4))) (wcel (cv x6) (co (cv x5) (cv x7) (cv x4)))) (λ x9 . cv x2)) (λ x8 . cv x2)) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2))) (cfv (cv x1) citv)) (cfv (cv x1) cds)) (cfv (cv x1) cbs)))wceq cafs (cmpt (λ x1 . cstrkg) (λ x1 . copab (λ x2 x3 . wsbc (λ x4 . wsbc (λ x5 . wsbc (λ x6 . wrex (λ x7 . wrex (λ x8 . wrex (λ x9 . wrex (λ x10 . wrex (λ x11 . wrex (λ x12 . wrex (λ x13 . wrex (λ x14 . w3a (wceq (cv x2) (cop (cop (cv x7) (cv x8)) (cop (cv x9) (cv x10)))) (wceq (cv x3) (cop (cop (cv x11) (cv x12)) (cop (cv x13) (cv x14)))) (w3a (wa (wcel (cv x8) (co (cv x7) (cv x9) (cv x6))) (wcel (cv x12) (co (cv x11) (cv x13) (cv x6)))) (wa (wceq (co (cv x7) (cv x8) (cv x5)) (co (cv x11) (cv x12) (cv x5))) (wceq (co (cv x8) (cv x9) (cv x5)) (co (cv x12) (cv x13) (cv x5)))) (wa (wceq (co (cv x7) (cv x10) (cv x5)) (co (cv x11) (cv x14) (cv x5))) (wceq (co (cv x8) (cv x10) (cv x5)) (co (cv x12) (cv x14) (cv x5)))))) (λ x14 . cv x4)) (λ x13 . cv x4)) (λ x12 . cv x4)) (λ x11 . cv x4)) (λ x10 . cv x4)) (λ x9 . cv x4)) (λ x8 . cv x4)) (λ x7 . cv x4)) (cfv (cv x1) citv)) (cfv (cv x1) cds)) (cfv (cv x1) cbs))))(∀ x1 x2 x3 x4 : ο . wb (w_bnj17 x1 x2 x3 x4) (wa (w3a x1 x2 x3) x4))(∀ x1 x2 x3 : ι → ο . wceq (c_bnj14 x1 x2 x3) (crab (λ x4 . wbr (cv x4) x3 x2) (λ x4 . x1)))(∀ x1 x2 : ι → ο . wb (w_bnj13 x1 x2) (wral (λ x3 . wcel (c_bnj14 x1 x2 (cv x3)) cvv) (λ x3 . x1)))(∀ x1 x2 : ι → ο . wb (w_bnj15 x1 x2) (wa (wfr x1 x2) (w_bnj13 x1 x2)))(∀ x1 x2 x3 : ι → ο . wceq (c_bnj18 x1 x2 x3) (ciun (λ x4 . cab (λ x5 . wrex (λ x6 . w3a (wfn (cv x5) (cv x6)) (wceq (cfv c0 (cv x5)) (c_bnj14 x1 x2 x3)) (wral (λ x7 . wcel (csuc (cv x7)) (cv x6)wceq (cfv (csuc (cv x7)) (cv x5)) (ciun (λ x8 . cfv (cv x7) (cv x5)) (λ x8 . c_bnj14 x1 x2 (cv x8)))) (λ x7 . com))) (λ x6 . cdif com (csn c0)))) (λ x4 . ciun (λ x5 . cdm (cv x4)) (λ x5 . cfv (cv x5) (cv x4)))))(∀ x1 x2 x3 : ι → ο . wb (w_bnj19 x1 x2 x3) (wral (λ x4 . wss (c_bnj14 x1 x3 (cv x4)) x2) (λ x4 . x2)))(∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3)∀ x2 x3 . x1 x3 x2)(∀ x1 x2 x3 . wceq (cv x1) (cv x2)wceq (cv x1) (cv x3)wceq (cv x2) (cv x3))wn (∀ x1 . wn (wceq (cv x1) (cv x1)))(∀ x1 . wn (∀ x2 . wn (wceq (cv x2) (cv x1))))(∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x2))∀ x3 . wceq (cv x3) (cv x1))(∀ x1 : ι → ι → ο . ∀ x2 x3 . wceq (cv x2) (cv x3)(∀ x4 . x1 x2 x4)∀ x4 . wceq (cv x4) (cv x3)x1 x4 x3)x0)x0
as obj
-
as prop
0a0b9..
theory
SetMM
stx
ebbdd..
address
TMHr1..