Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
as obj
-
as prop
9fceb..
theory
HotG
stx
ccf27..
address
TMWJk..