Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../278f7..
PUMff../1fc57..
vout
PrCit../7d4e7.. 3.94 bars
TMUjz../97727.. ownership of 04590.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLdk../1261e.. ownership of 74300.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbKi../731ed.. ownership of 05419.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPuA../bd603.. ownership of 891ef.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUTao../25293.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param atleastpatleastp : ιιο
Param u3 : ι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param nat_pnat_p : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param equipequip : ιιο
Param binintersectbinintersect : ιιι
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param ordsuccordsucc : ιι
Param setminussetminus : ιιι
Param binunionbinunion : ιιι
Param SingSing : ιι
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Known e6195.. : ∀ x0 x1 . x1x0x0 = binunion (setminus x0 x1) x1
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known SingISingI : ∀ x0 . x0Sing x0
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known 7fc90.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2∀ x4 . x4DirGraphOutNeighbors x0 x1 x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)
Theorem 05419.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . nat_p x2(∀ x3 . x3x0∀ x4 . x4x0(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)or (equip (binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x4)) x2) (equip (binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x4)) (ordsucc x2)))∀ x3 x4 . x3x0x4DirGraphOutNeighbors x0 x1 x3(∀ x5 . x5{x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) x2}not (x1 x4 x5))binunion (setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x3)) (setminus {x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) (ordsucc x2)} (setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x3))) = {x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) (ordsucc x2)} (proof)
Param u6 : ι
Theorem 04590.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 . nat_p x2(∀ x3 . x3x0∀ x4 . x4x0(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)or (equip (binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x4)) x2) (equip (binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x4)) (ordsucc x2)))∀ x3 x4 . x3x0x4DirGraphOutNeighbors x0 x1 x3(∀ x5 . x5{x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) x2}not (x1 x4 x5))binunion (setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x3)) (setminus {x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) (ordsucc x2)} (setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x3))) = {x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x3)) (ordsucc x2)} (proof)