Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq crtcl (cmpt (λ x1 . cvv) (λ x1 . cint (cab (λ x2 . w3a (wss (cres cid (cun (cdm (cv x1)) (crn (cv x1)))) (cv x2)) (wss (cv x1) (cv x2)) (wss (ccom (cv x2) (cv x2)) (cv x2))))))wceq crelexp (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cn0) (λ x1 x2 . cif (wceq (cv x2) cc0) (cres cid (cun (cdm (cv x1)) (crn (cv x1)))) (cfv (cv x2) (cseq (cmpt2 (λ x3 x4 . cvv) (λ x3 x4 . cvv) (λ x3 x4 . ccom (cv x3) (cv x1))) (cmpt (λ x3 . cvv) (λ x3 . cv x1)) c1))))wceq crtrcl (cmpt (λ x1 . cvv) (λ x1 . ciun (λ x2 . cn0) (λ x2 . co (cv x1) (cv x2) crelexp)))wceq cshi (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cc) (λ x1 x2 . copab (λ x3 x4 . wa (wcel (cv x3) cc) (wbr (co (cv x3) (cv x2) cmin) (cv x4) (cv x1)))))wceq csgn (cmpt (λ x1 . cxr) (λ x1 . cif (wceq (cv x1) cc0) cc0 (cif (wbr (cv x1) cc0 clt) (cneg c1) c1)))wceq ccj (cmpt (λ x1 . cc) (λ x1 . crio (λ x2 . wa (wcel (co (cv x1) (cv x2) caddc) cr) (wcel (co ci (co (cv x1) (cv x2) cmin) cmul) cr)) (λ x2 . cc)))wceq cre (cmpt (λ x1 . cc) (λ x1 . co (co (cv x1) (cfv (cv x1) ccj) caddc) c2 cdiv))wceq cim (cmpt (λ x1 . cc) (λ x1 . cfv (co (cv x1) ci cdiv) cre))wceq csqrt (cmpt (λ x1 . cc) (λ x1 . crio (λ x2 . w3a (wceq (co (cv x2) c2 cexp) (cv x1)) (wbr cc0 (cfv (cv x2) cre) cle) (wnel (co ci (cv x2) cmul) crp)) (λ x2 . cc)))wceq cabs (cmpt (λ x1 . cc) (λ x1 . cfv (co (cv x1) (cfv (cv x1) ccj) cmul) csqrt))wceq clsp (cmpt (λ x1 . cvv) (λ x1 . cinf (crn (cmpt (λ x2 . cr) (λ x2 . csup (cin (cima (cv x1) (co (cv x2) cpnf cico)) cxr) cxr clt))) cxr clt))wceq cli (copab (λ x1 x2 . wa (wcel (cv x2) cc) (wral (λ x3 . wrex (λ x4 . wral (λ x5 . wa (wcel (cfv (cv x5) (cv x1)) cc) (wbr (cfv (co (cfv (cv x5) (cv x1)) (cv x2) cmin) cabs) (cv x3) clt)) (λ x5 . cfv (cv x4) cuz)) (λ x4 . cz)) (λ x3 . crp))))wceq crli (copab (λ x1 x2 . wa (wa (wcel (cv x1) (co cc cr cpm)) (wcel (cv x2) cc)) (wral (λ x3 . wrex (λ x4 . wral (λ x5 . wbr (cv x4) (cv x5) clewbr (cfv (co (cfv (cv x5) (cv x1)) (cv x2) cmin) cabs) (cv x3) clt) (λ x5 . cdm (cv x1))) (λ x4 . cr)) (λ x3 . crp))))wceq co1 (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (cfv (cv x4) (cv x1)) cabs) (cv x3) cle) (λ x4 . cin (cdm (cv x1)) (co (cv x2) cpnf cico))) (λ x3 . cr)) (λ x2 . cr)) (λ x1 . co cc cr cpm))wceq clo1 (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wral (λ x4 . wbr (cfv (cv x4) (cv x1)) (cv x3) cle) (λ x4 . cin (cdm (cv x1)) (co (cv x2) cpnf cico))) (λ x3 . cr)) (λ x2 . cr)) (λ x1 . co cr cr cpm))(∀ x1 x2 : ι → ι → ο . ∀ x3 . wceq (csu (x1 x3) x2) (cio (λ x4 . wo (wrex (λ x5 . wa (wss (x1 x3) (cfv (cv x5) cuz)) (wbr (cseq caddc (cmpt (λ x6 . cz) (λ x6 . cif (wcel (cv x6) (x1 x3)) (csb (cv x6) x2) cc0)) (cv x5)) (cv x4) cli)) (λ x5 . cz)) (wrex (λ x5 . wex (λ x6 . wa (wf1o (co c1 (cv x5) cfz) (x1 x3) (cv x6)) (wceq (cv x4) (cfv (cv x5) (cseq caddc (cmpt (λ x7 . cn) (λ x7 . csb (cfv (cv x7) (cv x6)) x2)) c1))))) (λ x5 . cn)))))(∀ x1 x2 : ι → ι → ο . ∀ x3 . wceq (cprod x1 x2) (cio (λ x4 . wo (wrex (λ x5 . w3a (wss (x1 x3) (cfv (cv x5) cuz)) (wrex (λ x6 . wex (λ x7 . wa (wne (cv x7) cc0) (wbr (cseq cmul (cmpt (λ x8 . cz) (λ x8 . cif (wcel (cv x8) (x1 x8)) (x2 x8) c1)) (cv x6)) (cv x7) cli))) (λ x6 . cfv (cv x5) cuz)) (wbr (cseq cmul (cmpt (λ x6 . cz) (λ x6 . cif (wcel (cv x6) (x1 x6)) (x2 x6) c1)) (cv x5)) (cv x4) cli)) (λ x5 . cz)) (wrex (λ x5 . wex (λ x6 . wa (wf1o (co c1 (cv x5) cfz) (x1 x3) (cv x6)) (wceq (cv x4) (cfv (cv x5) (cseq cmul (cmpt (λ x7 . cn) (λ x7 . csb (cfv (cv x7) (cv x6)) x2)) c1))))) (λ x5 . cn)))))wceq crisefac (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cn0) (λ x1 x2 . cprod (λ x3 . co cc0 (co (cv x2) c1 cmin) cfz) (λ x3 . co (cv x1) (cv x3) caddc)))x0)x0
type
prop
theory
SetMM
name
df_rtrcl__df_relexp__df_rtrclrec__df_shft__df_sgn__df_cj__df_re__df_im__df_sqrt__df_abs__df_limsup__df_clim__df_rlim__df_o1__df_lo1__df_sum__df_prod__df_risefac
proof
PUV1k..
Megalodon
-
proofgold address
TMSPK..
creator
36224 PrCmT../0f694..
owner
36224 PrCmT../0f694..
term root
270cf..