Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr4te..
/
ae176..
PUTFy..
/
2d61e..
vout
Pr4te..
/
cd7b7..
0.22 bars
TMXYG..
/
6021e..
negprop ownership controlledby
PrEBh..
upto 0
TMamU..
/
0ca0e..
negprop ownership controlledby
PrEBh..
upto 0
TMdRQ..
/
1d746..
negprop ownership controlledby
PrEBh..
upto 0
TMZgB..
/
f01df..
negprop ownership controlledby
PrEBh..
upto 0
TMaBi..
/
6d8ed..
negprop ownership controlledby
PrEBh..
upto 0
TMaUw..
/
24109..
negprop ownership controlledby
PrEBh..
upto 0
TMLgB..
/
0b74e..
ownership of
25a44..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdPG..
/
f9e90..
ownership of
257a0..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMctK..
/
40d89..
ownership of
f5478..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPi4..
/
6dc0f..
ownership of
4b817..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKuV..
/
a63d3..
ownership of
1db04..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdcN..
/
3503c..
ownership of
e71ab..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMc6p..
/
eff82..
ownership of
b6adc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZnv..
/
f6ce3..
ownership of
2e999..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMM9i..
/
11e7f..
ownership of
96a7f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMoF..
/
e1967..
ownership of
50d20..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMH1D..
/
4f837..
ownership of
24059..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNeg..
/
a4a24..
ownership of
c6008..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZod..
/
4b664..
ownership of
2f285..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMas9..
/
766f7..
ownership of
4f3dc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGn8..
/
3acd7..
ownership of
feecd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZVT..
/
65e6c..
ownership of
eb4df..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUJqS..
/
6d6e8..
doc published by
PrEBh..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
surj
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Sep_In_Power
Sep_In_Power
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
∈
prim4
x0
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Theorem
feecd..
form100_63_surjCantor
:
∀ x0 .
∀ x1 :
ι → ι
.
not
(
surj
x0
(
prim4
x0
)
x1
)
(proof)
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Param
ReplSep
ReplSep
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Known
ReplSepI
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
⟶
x2
x3
∈
ReplSep
x0
x1
x2
Known
ReplSepE_impred
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Theorem
form100_63_Cantor
form100_63_injCantor
:
∀ x0 .
∀ x1 :
ι → ι
.
not
(
inj
(
prim4
x0
)
x0
x1
)
(proof)
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Param
IrreflexiveSymmetricReln
struct_r_graph
:
ι
→
ο
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
struct_comp
struct_comp
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Known
96ca7..
:
∀ x0 .
IrreflexiveSymmetricReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x4
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
36176..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
IrreflexiveSymmetricReln
(
pack_r
x0
x1
)
Theorem
24059..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Param
MetaCat_monic_p
monic
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
→
ο
Param
MetaCat_pullback_p
pullback_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
→
ι
) →
ο
Definition
MetaCat_subobject_classifier_p
subobject_classifier_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 .
λ x8 :
ι →
ι →
ι → ι
.
λ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
∀ x10 x11 x12 .
MetaCat_monic_p
x0
x1
x2
x3
x10
x11
x12
⟶
and
(
x1
x11
x6
(
x8
x10
x11
x12
)
)
(
MetaCat_pullback_p
x0
x1
x2
x3
x4
x11
x6
x7
(
x8
x10
x11
x12
)
x10
(
x5
x10
)
x12
(
x9
x10
x11
x12
)
)
)
Theorem
96a7f..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_p
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Definition
MetaCat_nno_p
nno_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x6
x6
x8
)
)
(
∀ x10 x11 x12 .
x0
x10
⟶
x1
x4
x10
x11
⟶
x1
x10
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x6
x6
x10
(
x9
x10
x11
x12
)
x8
=
x3
x6
x10
x10
x12
(
x9
x10
x11
x12
)
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x6
x6
x10
x13
x8
=
x3
x6
x10
x10
x12
x13
⟶
x13
=
x9
x10
x11
x12
)
)
Theorem
b6adc..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Param
IrreflexiveTransitiveReln
struct_r_partialord
:
ι
→
ο
Known
af4aa..
:
∀ x0 .
IrreflexiveTransitiveReln
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x2
⟶
not
(
x3
x4
x4
)
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Param
ZermeloWO
ZermeloWO
:
ι
→
ι
→
ο
Definition
ZermeloWOstrict
ZermeloWOstrict
:=
λ x0 x1 .
and
(
ZermeloWO
x0
x1
)
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
trichotomous_or
trichotomous_or
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
or
(
or
(
x0
x1
x2
)
(
x1
=
x2
)
)
(
x0
x2
x1
)
Known
ZermeloWOstrict_trich
ZermeloWOstrict_trich
:
trichotomous_or
ZermeloWOstrict
Known
b25e7..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
not
(
x1
x2
x2
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
IrreflexiveTransitiveReln
(
pack_r
x0
x1
)
Definition
transitive
transitive
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
x0
x1
x2
⟶
x0
x2
x3
⟶
x0
x1
x3
Known
ZermeloWO_tra
ZermeloWO_tra
:
transitive
ZermeloWO
Definition
antisymmetric
antisymmetric
:=
λ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
⟶
x1
=
x2
Known
ZermeloWO_antisym
ZermeloWO_antisym
:
antisymmetric
ZermeloWO
Theorem
1db04..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Theorem
f5478..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_p
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Theorem
25a44..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)