Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJx3../3af0b..
PUdSj../40467..
vout
PrJx3../cbd94.. 6.17 bars
TMGxA../e510a.. ownership of a87a3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUhD../87973.. ownership of adf68.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZw6../7f472.. ownership of d7087.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMWg../297d1.. ownership of c1a95.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNb9../39d74.. ownership of a3fb1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMP6L../8c115.. ownership of 08c25.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSUW../15bc5.. ownership of 8f948.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZXf../31c5a.. ownership of 54e3a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHKY../88d87.. ownership of 3b268.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQKL../d7afc.. ownership of 23fa4.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMd9o../2d773.. ownership of 5c585.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMT89../a8b1c.. ownership of 4d66e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUSRH../aeb1c.. doc published by Pr4zB..
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Definition u17_to_Church17 := λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . ap (lam 17 (λ x18 . If_i (x18 = 0) x1 (If_i (x18 = 1) x2 (If_i (x18 = 2) x3 (If_i (x18 = 3) x4 (If_i (x18 = 4) x5 (If_i (x18 = 5) x6 (If_i (x18 = 6) x7 (If_i (x18 = 7) x8 (If_i (x18 = 8) x9 (If_i (x18 = 9) x10 (If_i (x18 = 10) x11 (If_i (x18 = 11) x12 (If_i (x18 = 12) x13 (If_i (x18 = 13) x14 (If_i (x18 = 14) x15 (If_i (x18 = 15) x16 x17))))))))))))))))) x0
Param u9 : ι
Known 511d7.. : (∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 . x3x1ap (lam x1 (λ x5 . If_i (x5 = x3) x0 (x2 (ordsucc x3) x5))) x3 = x0)(∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 x4 . (x4 = x3∀ x5 : ο . x5)ap (lam x1 (λ x6 . If_i (x6 = x3) x0 (x2 (ordsucc x3) x6))) x4 = ap (lam x1 (x2 (ordsucc x3))) x4)∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . ap (lam 17 (λ x18 . If_i (x18 = 0) x0 (If_i (x18 = 1) x1 (If_i (x18 = 2) x2 (If_i (x18 = 3) x3 (If_i (x18 = 4) x4 (If_i (x18 = 5) x5 (If_i (x18 = 6) x6 (If_i (x18 = 7) x7 (If_i (x18 = 8) x8 (If_i (x18 = 9) x9 (If_i (x18 = 10) x10 (If_i (x18 = 11) x11 (If_i (x18 = 12) x12 (If_i (x18 = 13) x13 (If_i (x18 = 14) x14 (If_i (x18 = 15) x15 x16))))))))))))))))) u9 = x9
Known 48efb.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 . x3x1ap (lam x1 (λ x5 . If_i (x5 = x3) x0 (x2 (ordsucc x3) x5))) x3 = x0
Known d21a1.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 x4 . (x4 = x3∀ x5 : ο . x5)ap (lam x1 (λ x6 . If_i (x6 = x3) x0 (x2 (ordsucc x3) x6))) x4 = ap (lam x1 (x2 (ordsucc x3))) x4
Theorem 5c585.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . ap (lam 17 (λ x18 . If_i (x18 = 0) x0 (If_i (x18 = 1) x1 (If_i (x18 = 2) x2 (If_i (x18 = 3) x3 (If_i (x18 = 4) x4 (If_i (x18 = 5) x5 (If_i (x18 = 6) x6 (If_i (x18 = 7) x7 (If_i (x18 = 8) x8 (If_i (x18 = 9) x9 (If_i (x18 = 10) x10 (If_i (x18 = 11) x11 (If_i (x18 = 12) x12 (If_i (x18 = 13) x13 (If_i (x18 = 14) x14 (If_i (x18 = 15) x15 x16))))))))))))))))) u9 = x9 (proof)
Param u10 : ι
Known 929f6.. : (∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 . x3x1ap (lam x1 (λ x5 . If_i (x5 = x3) x0 (x2 (ordsucc x3) x5))) x3 = x0)(∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 x4 . (x4 = x3∀ x5 : ο . x5)ap (lam x1 (λ x6 . If_i (x6 = x3) x0 (x2 (ordsucc x3) x6))) x4 = ap (lam x1 (x2 (ordsucc x3))) x4)∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . ap (lam 17 (λ x18 . If_i (x18 = 0) x0 (If_i (x18 = 1) x1 (If_i (x18 = 2) x2 (If_i (x18 = 3) x3 (If_i (x18 = 4) x4 (If_i (x18 = 5) x5 (If_i (x18 = 6) x6 (If_i (x18 = 7) x7 (If_i (x18 = 8) x8 (If_i (x18 = 9) x9 (If_i (x18 = 10) x10 (If_i (x18 = 11) x11 (If_i (x18 = 12) x12 (If_i (x18 = 13) x13 (If_i (x18 = 14) x14 (If_i (x18 = 15) x15 x16))))))))))))))))) u10 = x10
Theorem 3b268.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . ap (lam 17 (λ x18 . If_i (x18 = 0) x0 (If_i (x18 = 1) x1 (If_i (x18 = 2) x2 (If_i (x18 = 3) x3 (If_i (x18 = 4) x4 (If_i (x18 = 5) x5 (If_i (x18 = 6) x6 (If_i (x18 = 7) x7 (If_i (x18 = 8) x8 (If_i (x18 = 9) x9 (If_i (x18 = 10) x10 (If_i (x18 = 11) x11 (If_i (x18 = 12) x12 (If_i (x18 = 13) x13 (If_i (x18 = 14) x14 (If_i (x18 = 15) x15 x16))))))))))))))))) u10 = x10 (proof)
Param u11 : ι
Known 02699.. : (∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 . x3x1ap (lam x1 (λ x5 . If_i (x5 = x3) x0 (x2 (ordsucc x3) x5))) x3 = x0)(∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 x4 . (x4 = x3∀ x5 : ο . x5)ap (lam x1 (λ x6 . If_i (x6 = x3) x0 (x2 (ordsucc x3) x6))) x4 = ap (lam x1 (x2 (ordsucc x3))) x4)∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . ap (lam 17 (λ x18 . If_i (x18 = 0) x0 (If_i (x18 = 1) x1 (If_i (x18 = 2) x2 (If_i (x18 = 3) x3 (If_i (x18 = 4) x4 (If_i (x18 = 5) x5 (If_i (x18 = 6) x6 (If_i (x18 = 7) x7 (If_i (x18 = 8) x8 (If_i (x18 = 9) x9 (If_i (x18 = 10) x10 (If_i (x18 = 11) x11 (If_i (x18 = 12) x12 (If_i (x18 = 13) x13 (If_i (x18 = 14) x14 (If_i (x18 = 15) x15 x16))))))))))))))))) u11 = x11
Theorem 8f948.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . ap (lam 17 (λ x18 . If_i (x18 = 0) x0 (If_i (x18 = 1) x1 (If_i (x18 = 2) x2 (If_i (x18 = 3) x3 (If_i (x18 = 4) x4 (If_i (x18 = 5) x5 (If_i (x18 = 6) x6 (If_i (x18 = 7) x7 (If_i (x18 = 8) x8 (If_i (x18 = 9) x9 (If_i (x18 = 10) x10 (If_i (x18 = 11) x11 (If_i (x18 = 12) x12 (If_i (x18 = 13) x13 (If_i (x18 = 14) x14 (If_i (x18 = 15) x15 x16))))))))))))))))) u11 = x11 (proof)
Known aa7c9.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x1 . ∀ x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (∀ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x0 x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 = x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19)x0 x1 = x2
Theorem a3fb1.. : u17_to_Church17 u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x10 (proof)
Theorem d7087.. : u17_to_Church17 u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x11 (proof)
Theorem a87a3.. : u17_to_Church17 u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x12 (proof)