Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9)(∀ x7 . x7x0∀ x8 . x8x0x3 x7 x8 = x3 x8 x7)x1x0(∀ x7 . x7x0x3 x1 x7 = x7)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8x0)(∀ x7 . x7x0∀ x8 . x8x0x4 x7 x8 = x4 x8 x7)x2x0(x2 = x1∀ x7 : ο . x7)(∀ x7 . x7x0x4 x2 x7 = x7)explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1(∀ x7 . x7x0∀ x8 . x8x0x6 x7 x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x6 x7 x8 = x6 x10 x11))) = x7)(∀ x7 . x7x0∀ x8 . x8x0prim0 (λ x10 . and (x10x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x6 x7 x8 = x6 x12 x13)))) x10)) = x8)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (∃ x9 . and (x9x0) (x7 = x6 x8 x9)))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6prim0 (λ x8 . and (x8x0) (x7 = x6 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) x8))x0)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11))) = prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10)) = prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))x7 = x8)x6 x1 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6x6 x2 x1ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x6 (x3 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x8 = x6 x14 x15))))) (x3 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x8 = x6 x16 x17)))) x14)))) = x6 x10 x11))) = x3 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11)))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13))))) (x3 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x8 = x6 x14 x15)))) x12)))) = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x6 (x3 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x8 = x6 x16 x17))))) (x3 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∃ x19 . and (x19x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∃ x19 . and (x19x0) (x8 = x6 x18 x19)))) x16)))) = x6 x12 x13)))) x10)) = x3 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))))ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6)(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x8 = x6 x14 x15))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x8 = x6 x16 x17)))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (x14x0) (x8 = x6 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x8 = x6 x16 x17)))) x14)))) (x4 (prim0 (λ x14 . and (x14x0) (x7 = x6 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x8 = x6 x14 x15)))))) = x6 x10 x11))) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x10 . and (x10x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x8 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (x12x0) (x8 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x8 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (x12x0) (x7 = x6 (prim0 (λ x14 . and (x14x0) (∃ x15 . and (x15x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))))) = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x8 = x6 x16 x17))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∃ x19 . and (x19x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∃ x19 . and (x19x0) (x8 = x6 x18 x19)))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (x16x0) (x8 = x6 (prim0 (λ x18 . and (x18x0) (∃ x19 . and (x19x0) (x8 = x6 x18 x19)))) x16)))) (x4 (prim0 (λ x16 . and (x16x0) (x7 = x6 (prim0 (λ x18 . and (x18x0) (∃ x19 . and (x19x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (x16x0) (∃ x17 . and (x17x0) (x8 = x6 x16 x17)))))) = x6 x12 x13)))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x7 = x6 (prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10x0) (∃ x11 . and (x11x0) (x8 = x6 x10 x11))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x9 = x6 x11 x12)))))))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(x7 = x6 x1 x1∀ x8 : ο . x8)∃ x8 . and (x8ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))))) = x6 x2 x1))(∀ x7 . x7ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x7 = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x7 = x6 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x7 = x6 (prim0 (λ x15 . and (x15x0) (∃ x16 . and (x16x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x7 = x6 (prim0 (λ x19 . and (x19x0) (∃ x20 . and (x20x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17x0) (∃ x18 . and (x18x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9x0) (x7 = x6 (prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9x0) (∃ x10 . and (x10x0) (x8 = x6 x9 x10)))))))
as obj
-
as prop
33222..
theory
HotG
stx
c098f..
address
TMUkW..