∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x3 x8 x7) ⟶ x1 ∈ x0 ⟶ (∀ x7 . x7 ∈ x0 ⟶ x3 x1 x7 = x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 ∈ x0) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x4 x8 x7) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x7 : ο . x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ x4 x2 x7 = x7) ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 x7 x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x6 x7 x8 = x6 x10 x11))) = x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x6 x7 x8 = x6 x12 x13)))) x10)) = x8) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ prim0 (λ x8 . and (x8 ∈ x0) (∃ x9 . and (x9 ∈ x0) (x7 = x6 x8 x9))) ∈ x0) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) x8)) ∈ x0) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11))) = prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))) ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10)) = prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)) ⟶ x7 = x8) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6 ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x8 = x6 x14 x15))))) (x3 (prim0 (λ x14 . and (x14 ∈ x0) (x7 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (x14 ∈ x0) (x8 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x8 = x6 x16 x17)))) x14)))) = x6 x10 x11))) = x3 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x6 (x3 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13))))) (x3 (prim0 (λ x12 . and (x12 ∈ x0) (x7 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (x8 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x8 = x6 x14 x15)))) x12)))) = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x8 = x6 x16 x17))))) (x3 (prim0 (λ x16 . and (x16 ∈ x0) (x7 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∃ x19 . and (x19 ∈ x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (x16 ∈ x0) (x8 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∃ x19 . and (x19 ∈ x0) (x8 = x6 x18 x19)))) x16)))) = x6 x12 x13)))) x10)) = x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))))) ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x8 = x6 x14 x15))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14 ∈ x0) (x7 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (x14 ∈ x0) (x8 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x8 = x6 x16 x17)))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x7 = x6 x14 x15)))) (prim0 (λ x14 . and (x14 ∈ x0) (x8 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x8 = x6 x16 x17)))) x14)))) (x4 (prim0 (λ x14 . and (x14 ∈ x0) (x7 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x7 = x6 x16 x17)))) x14))) (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x8 = x6 x14 x15)))))) = x6 x10 x11))) = x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x7 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (x8 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x8 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) (prim0 (λ x12 . and (x12 ∈ x0) (x8 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x8 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x7 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∃ x15 . and (x15 ∈ x0) (x7 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))))) = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x8 = x6 x16 x17))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16 ∈ x0) (x7 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∃ x19 . and (x19 ∈ x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (x16 ∈ x0) (x8 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∃ x19 . and (x19 ∈ x0) (x8 = x6 x18 x19)))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x7 = x6 x16 x17)))) (prim0 (λ x16 . and (x16 ∈ x0) (x8 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∃ x19 . and (x19 ∈ x0) (x8 = x6 x18 x19)))) x16)))) (x4 (prim0 (λ x16 . and (x16 ∈ x0) (x7 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∃ x19 . and (x19 ∈ x0) (x7 = x6 x18 x19)))) x16))) (prim0 (λ x16 . and (x16 ∈ x0) (∃ x17 . and (x17 ∈ x0) (x8 = x6 x16 x17)))))) = x6 x12 x13)))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x8 = x6 x10 x11)))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x9 = x6 x11 x12))))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (x8 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x8 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))))) = x6 x2 x1)) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12)))))) = x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))))) = x6 x11 x12)))) (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x8 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x8 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x8 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x8 = x6 x17 x18)))))) = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x7 = x6 x13 x14)))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x7 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x7 = x6 x17 x18)))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∃ x20 . and (x20 ∈ x0) (x7 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∃ x18 . and (x18 ∈ x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11))))) ⟶ explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10))))))) |
|