Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJAV..
/
f606a..
PULVY..
/
dd2ae..
vout
PrJAV..
/
9420c..
6.53 bars
TMXh5..
/
57607..
ownership of
adde3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJbi..
/
f88b8..
ownership of
778a9..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJ18..
/
1c2f9..
ownership of
1c09e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXTh..
/
82ab8..
ownership of
a573f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXQy..
/
afc13..
ownership of
f8b84..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVEm..
/
bd6d2..
ownership of
52f8a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMZK..
/
8ffea..
ownership of
7a851..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMKN..
/
ed5cf..
ownership of
3bd96..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKu8..
/
a7038..
ownership of
cf9c7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZcc..
/
4236e..
ownership of
fc646..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJuj..
/
b6b30..
ownership of
b2ff4..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMU2Z..
/
8916d..
ownership of
63714..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSti..
/
4f84b..
ownership of
b4ec6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMS5Y..
/
ab94d..
ownership of
25de8..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFj5..
/
238aa..
ownership of
b84b2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaLj..
/
5749a..
ownership of
1a247..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcTT..
/
f6fd0..
ownership of
69ffc..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMH3H..
/
2d276..
ownership of
2c8e1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQXc..
/
1ebb4..
ownership of
133bb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNxJ..
/
cd51b..
ownership of
c0849..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUTEc..
/
ea4c6..
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Theorem
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Theorem
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
(proof)
Known
bij_comp
bij_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
x1
x2
x4
⟶
bij
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
Theorem
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
TwoRamseyProp
TwoRamseyProp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
equip
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
nat_2
nat_2
:
nat_p
2
Theorem
nat_3
nat_3
:
nat_p
3
(proof)
Theorem
nat_4
nat_4
:
nat_p
4
(proof)
Theorem
nat_5
nat_5
:
nat_p
5
(proof)
Theorem
nat_6
nat_6
:
nat_p
6
(proof)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
In_2_3
In_2_3
:
2
∈
3
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Known
neq_2_1
neq_2_1
:
2
=
1
⟶
∀ x0 : ο .
x0
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
b2ff4..
:
∀ x0 x1 x2 .
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
equip
3
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
(proof)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
Known
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
Known
or3I1
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
or3I2
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
or3I3
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Theorem
cf9c7..
:
∀ x0 .
equip
3
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
and
(
and
(
and
(
x2
=
x4
⟶
∀ x7 : ο .
x7
)
(
x2
=
x6
⟶
∀ x7 : ο .
x7
)
)
(
x4
=
x6
⟶
∀ x7 : ο .
x7
)
)
(
∀ x7 .
x7
∈
x0
⟶
or
(
or
(
x7
=
x2
)
(
x7
=
x4
)
)
(
x7
=
x6
)
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Known
or3E
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Theorem
7a851..
:
∀ x0 .
equip
3
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 :
ι → ο
.
x6
x2
⟶
x6
x3
⟶
x6
x4
⟶
x6
x5
)
⟶
x1
)
⟶
x1
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
x0
∈
x1
)
(
x0
=
x1
)
)
(
x1
∈
x0
)
Theorem
f8b84..
:
∀ x0 .
equip
3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
∈
x3
⟶
x3
∈
x4
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 :
ι → ο
.
x6
x2
⟶
x6
x3
⟶
x6
x4
⟶
x6
x5
)
⟶
x1
)
⟶
x1
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
1c09e..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ι
.
equip
x0
x1
⟶
bij
x2
x3
x5
⟶
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
⊆
x2
)
(
and
(
equip
x0
x7
)
(
∀ x8 .
x8
∈
x7
⟶
∀ x9 .
x9
∈
x7
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
x4
(
x5
x8
)
(
x5
x9
)
)
)
⟶
x6
)
⟶
x6
)
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
⊆
x3
)
(
and
(
equip
x1
x7
)
(
∀ x8 .
x8
∈
x7
⟶
∀ x9 .
x9
∈
x7
⟶
(
x8
=
x9
⟶
∀ x10 : ο .
x10
)
⟶
x4
x8
x9
)
)
⟶
x6
)
⟶
x6
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
adde3..
:
∀ x0 x1 x2 x3 x4 x5 .
equip
x0
x3
⟶
equip
x1
x4
⟶
equip
x2
x5
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x3
x4
x5
(proof)