Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrP9d../28af7..
PUdrM../9b6ce..
vout
PrP9d../85778.. 0.23 bars
TMHeb../ead60.. ownership of 75a41.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHWd../28de0.. ownership of a46f9.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUx5../cee71.. ownership of ee44b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQr4../cb86b.. ownership of a4111.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKsG../fbaa2.. ownership of 1077c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMa9i../bedd5.. ownership of dcc81.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQug../1b0bb.. ownership of 70b0f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWZ5../9e0cb.. ownership of f4bb4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTNY../84c53.. ownership of a9079.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMH4N../c3ad5.. ownership of 1c55d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdHX../5b2e3.. ownership of e13b6.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQr9../a6abc.. ownership of f0681.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXhF../0704a.. ownership of e49b4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQUq../585cf.. ownership of 88591.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJtZ../bb22b.. ownership of 0ef6e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMYf4../35482.. ownership of 3e48c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTex../8abb6.. ownership of ec613.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHs9../d251a.. ownership of d4e4b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZ5b../f6e3d.. ownership of 75fea.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFtH../c2b0f.. ownership of 48aa9.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGWT../50ddb.. ownership of a3e3e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRks../c4f01.. ownership of 4c2c2.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbFk../e678f.. ownership of 1e2ae.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJvi../43f6d.. ownership of a50b1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPVP../d0a67.. ownership of 35202.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMi5../cfecd.. ownership of c7314.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMYq8../4d0c0.. ownership of 9fd7a.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMFgH../d4a59.. ownership of 5464b.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSwY../e5b3c.. ownership of 5a1fb.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKjS../1dff4.. ownership of 86f6b.. as obj with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUYhi../f934c.. doc published by PrEBh..
Param pack_upack_u : ι(ιι) → ι
Definition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)x1 (pack_u x2 x3))x1 x0
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_initial_pinitial_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x4 x6 (x5 x6)) (∀ x7 . x1 x4 x6 x7x7 = x5 x6))
Param UnaryFuncHomHom_struct_u : ιιιο
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 66c4c..Hom_struct_u_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . UnaryFuncHom (pack_u x0 x2) (pack_u x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0ap x4 (x2 x6) = x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem 35202.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)x0 (pack_u 0 (λ x1 . x1))MetaCat_initial_p x0 UnaryFuncHom struct_id struct_comp (pack_u 0 (λ x1 . x1)) (λ x1 . lam 0 (λ x2 . x2)) (proof)
Known pack_struct_u_Ipack_struct_u_I : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)struct_u (pack_u x0 x1)
Theorem 1e2ae..MetaCat_struct_u_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p struct_u UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param ordsuccordsucc : ιι
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Known pack_u_0_eq2pack_u_0_eq2 : ∀ x0 . ∀ x1 : ι → ι . x0 = ap (pack_u x0 x1) 0
Known In_0_1In_0_1 : 01
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem a3e3e.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)x0 (pack_u 1 (λ x1 . x1))MetaCat_terminal_p x0 UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x1 . x1)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (proof)
Theorem 75fea..MetaCat_struct_u_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p struct_u UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Param unpack_u_iunpack_u_i : ι(ι(ιι) → ι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param If_iIf_i : οιιι
Definition 5a1fb.. := λ x0 x1 . unpack_u_i x0 (λ x2 . λ x3 : ι → ι . unpack_u_i x1 (λ x4 . λ x5 : ι → ι . pack_u (setprod x2 x4) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (x3 (ap x6 0)) (x5 (ap x6 1))))))
Known unpack_u_i_equnpack_u_i_eq : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_i (pack_u x1 x2) x0 = x0 x1 x2
Known pack_u_extpack_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)pack_u x0 x1 = pack_u x0 x2
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Theorem ec613.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . ∀ x3 : ι → ι . 5a1fb.. (pack_u x0 x1) (pack_u x2 x3) = pack_u (setprod x0 x2) (λ x5 . lam 2 (λ x6 . If_i (x6 = 0) (x1 (ap x5 0)) (x3 (ap x5 1)))) (proof)
Known tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1
Theorem 0ef6e.. : ∀ x0 x1 . struct_u x0struct_u x1struct_u (5a1fb.. x0 x1) (proof)
Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x10 x4 x11x1 x10 x5 x12and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13x3 x10 x6 x4 x7 x13 = x11x3 x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Theorem e49b4.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)(∀ x1 x2 . x0 x1x0 x2x0 (5a1fb.. x1 x2))MetaCat_product_constr_p x0 UnaryFuncHom struct_id struct_comp 5a1fb.. (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))) (proof)
Theorem e13b6.. : MetaCat_product_constr_p struct_u UnaryFuncHom struct_id struct_comp 5a1fb.. (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 0)) (λ x0 x1 . lam (setprod (ap x0 0) (ap x1 0)) (λ x2 . ap x2 1)) (λ x0 x1 x2 x3 x4 . lam (ap x2 0) (λ x5 . lam 2 (λ x6 . If_i (x6 = 0) (ap x3 x5) (ap x4 x5)))) (proof)
Theorem a9079..MetaCat_struct_u_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p struct_u UnaryFuncHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param SepSep : ι(ιο) → ι
Definition 9fd7a.. := λ x0 x1 x2 x3 . unpack_u_i x0 (λ x4 . pack_u {x5 ∈ x4|ap x2 x5 = ap x3 x5})
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Theorem 70b0f.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 x4 . 9fd7a.. (pack_u x0 x1) x2 x3 x4 = pack_u {x6 ∈ x0|ap x3 x6 = ap x4 x6} x1 (proof)
Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11∀ x12 . x1 x11 x4 x12x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13x3 x11 x8 x4 x9 x13 = x12x13 = x10 x11 x12))
Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0x1x2x3x4x5x6x7and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7
Theorem 1077c.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_u x1)(∀ x1 x2 x3 x4 . x0 x1x0 x2UnaryFuncHom x1 x2 x3UnaryFuncHom x1 x2 x4x0 (9fd7a.. x1 x2 x3 x4))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 UnaryFuncHom struct_id struct_comp x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Theorem ee44b..MetaCat_struct_u_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p struct_u UnaryFuncHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known 73eab..MetaCat_struct_u : MetaCat struct_u UnaryFuncHom struct_id struct_comp
Param MetaCat_pullback_struct_ppullback_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Theorem 75a41..MetaCat_struct_u_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p struct_u UnaryFuncHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)