Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrP9d..
/
28af7..
PUdrM..
/
9b6ce..
vout
PrP9d..
/
85778..
0.23 bars
TMHeb..
/
ead60..
ownership of
75a41..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHWd..
/
28de0..
ownership of
a46f9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUx5..
/
cee71..
ownership of
ee44b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQr4..
/
cb86b..
ownership of
a4111..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKsG..
/
fbaa2..
ownership of
1077c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMa9i..
/
bedd5..
ownership of
dcc81..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQug..
/
1b0bb..
ownership of
70b0f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWZ5..
/
9e0cb..
ownership of
f4bb4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTNY..
/
84c53..
ownership of
a9079..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMH4N..
/
c3ad5..
ownership of
1c55d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdHX..
/
5b2e3..
ownership of
e13b6..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQr9..
/
a6abc..
ownership of
f0681..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXhF..
/
0704a..
ownership of
e49b4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQUq..
/
585cf..
ownership of
88591..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJtZ..
/
bb22b..
ownership of
0ef6e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYf4..
/
35482..
ownership of
3e48c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTex..
/
8abb6..
ownership of
ec613..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHs9..
/
d251a..
ownership of
d4e4b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZ5b..
/
f6e3d..
ownership of
75fea..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFtH..
/
c2b0f..
ownership of
48aa9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGWT..
/
50ddb..
ownership of
a3e3e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRks..
/
c4f01..
ownership of
4c2c2..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbFk..
/
e678f..
ownership of
1e2ae..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJvi..
/
43f6d..
ownership of
a50b1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPVP..
/
d0a67..
ownership of
35202..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMi5..
/
cfecd..
ownership of
c7314..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYq8..
/
4d0c0..
ownership of
9fd7a..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFgH..
/
d4a59..
ownership of
5464b..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSwY..
/
e5b3c..
ownership of
5a1fb..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMKjS..
/
1dff4..
ownership of
86f6b..
as obj with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUYhi..
/
f934c..
doc published by
PrEBh..
Param
pack_u
pack_u
:
ι
→
(
ι
→
ι
) →
ι
Definition
struct_u
struct_u
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
∈
x2
)
⟶
x1
(
pack_u
x2
x3
)
)
⟶
x1
x0
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaCat_initial_p
initial_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x4
x6
(
x5
x6
)
)
(
∀ x7 .
x1
x4
x6
x7
⟶
x7
=
x5
x6
)
)
Param
UnaryFuncHom
Hom_struct_u
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
66c4c..
Hom_struct_u_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
UnaryFuncHom
(
pack_u
x0
x2
)
(
pack_u
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
ap
x4
(
x2
x6
)
=
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
35202..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
x0
(
pack_u
0
(
λ x1 .
x1
)
)
⟶
MetaCat_initial_p
x0
UnaryFuncHom
struct_id
struct_comp
(
pack_u
0
(
λ x1 .
x1
)
)
(
λ x1 .
lam
0
(
λ x2 .
x2
)
)
(proof)
Known
pack_struct_u_I
pack_struct_u_I
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
struct_u
(
pack_u
x0
x1
)
Theorem
1e2ae..
MetaCat_struct_u_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
struct_u
UnaryFuncHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Known
pack_u_0_eq2
pack_u_0_eq2
:
∀ x0 .
∀ x1 :
ι → ι
.
x0
=
ap
(
pack_u
x0
x1
)
0
Known
In_0_1
In_0_1
:
0
∈
1
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
a3e3e..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
x0
(
pack_u
1
(
λ x1 .
x1
)
)
⟶
MetaCat_terminal_p
x0
UnaryFuncHom
struct_id
struct_comp
(
pack_u
1
(
λ x1 .
x1
)
)
(
λ x1 .
lam
(
ap
x1
0
)
(
λ x2 .
0
)
)
(proof)
Theorem
75fea..
MetaCat_struct_u_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
struct_u
UnaryFuncHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_u_i
unpack_u_i
:
ι
→
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
5a1fb..
:=
λ x0 x1 .
unpack_u_i
x0
(
λ x2 .
λ x3 :
ι → ι
.
unpack_u_i
x1
(
λ x4 .
λ x5 :
ι → ι
.
pack_u
(
setprod
x2
x4
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
x3
(
ap
x6
0
)
)
(
x5
(
ap
x6
1
)
)
)
)
)
)
Known
unpack_u_i_eq
unpack_u_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_u_i
(
pack_u
x1
x2
)
x0
=
x0
x1
x2
Known
pack_u_ext
pack_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
pack_u
x0
x1
=
pack_u
x0
x2
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
ec613..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
∀ x3 :
ι → ι
.
5a1fb..
(
pack_u
x0
x1
)
(
pack_u
x2
x3
)
=
pack_u
(
setprod
x0
x2
)
(
λ x5 .
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
(
x1
(
ap
x5
0
)
)
(
x3
(
ap
x5
1
)
)
)
)
(proof)
Known
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
Theorem
0ef6e..
:
∀ x0 x1 .
struct_u
x0
⟶
struct_u
x1
⟶
struct_u
(
5a1fb..
x0
x1
)
(proof)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
e49b4..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
(
∀ x1 x2 .
x0
x1
⟶
x0
x2
⟶
x0
(
5a1fb..
x1
x2
)
)
⟶
MetaCat_product_constr_p
x0
UnaryFuncHom
struct_id
struct_comp
5a1fb..
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
0
)
)
(
λ x1 x2 .
lam
(
setprod
(
ap
x1
0
)
(
ap
x2
0
)
)
(
λ x3 .
ap
x3
1
)
)
(
λ x1 x2 x3 x4 x5 .
lam
(
ap
x3
0
)
(
λ x6 .
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
(
ap
x4
x6
)
(
ap
x5
x6
)
)
)
)
(proof)
Theorem
e13b6..
:
MetaCat_product_constr_p
struct_u
UnaryFuncHom
struct_id
struct_comp
5a1fb..
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
0
)
)
(
λ x0 x1 .
lam
(
setprod
(
ap
x0
0
)
(
ap
x1
0
)
)
(
λ x2 .
ap
x2
1
)
)
(
λ x0 x1 x2 x3 x4 .
lam
(
ap
x2
0
)
(
λ x5 .
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
(
ap
x3
x5
)
(
ap
x4
x5
)
)
)
)
(proof)
Theorem
a9079..
MetaCat_struct_u_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
struct_u
UnaryFuncHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
9fd7a..
:=
λ x0 x1 x2 x3 .
unpack_u_i
x0
(
λ x4 .
pack_u
{x5 ∈
x4
|
ap
x2
x5
=
ap
x3
x5
}
)
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Theorem
70b0f..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 x4 .
9fd7a..
(
pack_u
x0
x1
)
x2
x3
x4
=
pack_u
{x6 ∈
x0
|
ap
x3
x6
=
ap
x4
x6
}
x1
(proof)
Definition
MetaCat_equalizer_p
equalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
x3
x8
x4
x5
x6
x9
=
x3
x8
x4
x5
x7
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_struct_p
equalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
41253..
and8I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
Theorem
1077c..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_u
x1
)
⟶
(
∀ x1 x2 x3 x4 .
x0
x1
⟶
x0
x2
⟶
UnaryFuncHom
x1
x2
x3
⟶
UnaryFuncHom
x1
x2
x4
⟶
x0
(
9fd7a..
x1
x2
x3
x4
)
)
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι → ι
.
(
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι →
ι → ι
.
(
∀ x5 : ο .
(
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
UnaryFuncHom
struct_id
struct_comp
x2
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
ee44b..
MetaCat_struct_u_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
struct_u
UnaryFuncHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
73eab..
MetaCat_struct_u
:
MetaCat
struct_u
UnaryFuncHom
struct_id
struct_comp
Param
MetaCat_pullback_struct_p
pullback_constr_p
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
ed2b0..
product_equalizer_pullback_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x5
x7
x9
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
x0
x1
x2
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Theorem
75a41..
MetaCat_struct_u_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
struct_u
UnaryFuncHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)