∀ x0 . ∀ x1 : ι → ο . (∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3) ⟶ ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ι . (∀ x6 . x1 x6 ⟶ x1 (x2 x6)) ⟶ (∀ x6 . x1 x6 ⟶ x1 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7)) ⟶ (∀ x6 . x1 x6 ⟶ x2 (x2 x6) = x6) ⟶ (∀ x6 . x1 x6 ⟶ x3 (x3 x6) = x6) ⟶ (∀ x6 . x1 x6 ⟶ x3 (x2 x6) = x2 (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x4 x6 x7 = x4 x7 x6) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x3 (x5 x6 x7) = x5 (x3 x7) (x3 x6)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 x6 (x2 x7) = x2 (x5 x6 x7)) ⟶ (∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x5 (x2 x6) x7 = x2 (x5 x6 x7)) ⟶ ∀ x6 x7 . CD_carr x0 x1 x6 ⟶ CD_carr x0 x1 x7 ⟶ CD_conj x0 x1 x2 x3 (CD_mul x0 x1 x2 x3 x4 x5 x6 x7) = CD_mul x0 x1 x2 x3 x4 x5 (CD_conj x0 x1 x2 x3 x7) (CD_conj x0 x1 x2 x3 x6) |
|