Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr3rF..
/
dd963..
PUa1d..
/
7e53e..
vout
Pr3rF..
/
53892..
0.10 bars
TMZkk..
/
1dc2d..
ownership of
6af17..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLqK..
/
e7541..
ownership of
d7744..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbxt..
/
1db03..
ownership of
3baf9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNi4..
/
c675b..
ownership of
b150a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKSU..
/
35b58..
ownership of
c2b69..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbFA..
/
555d3..
ownership of
f6d13..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFuh..
/
45f21..
ownership of
a0e20..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTXh..
/
69ab5..
ownership of
32714..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMURh..
/
7fd73..
ownership of
71595..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa33..
/
27b00..
ownership of
a04e1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVqe..
/
42dd5..
ownership of
994ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKrV..
/
8053b..
ownership of
2953c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcqN..
/
95372..
ownership of
527d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb2K..
/
1bf1b..
ownership of
6b473..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLZt..
/
3491e..
ownership of
c1362..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMEm..
/
82990..
ownership of
3d0b9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP41..
/
89103..
ownership of
c0b86..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMP3h..
/
d8258..
ownership of
4d7d4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSPr..
/
55afc..
ownership of
ec946..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRaA..
/
d903c..
ownership of
0ea96..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR8D..
/
4c4ac..
ownership of
9fdb3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdRZ..
/
59f9d..
ownership of
9aa0d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKpm..
/
55350..
ownership of
94f9c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcLM..
/
608b0..
ownership of
8851f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGYF..
/
cc999..
ownership of
47773..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMduw..
/
0e1de..
ownership of
e136b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGWU..
/
32ac3..
ownership of
eee08..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX1m..
/
4cd03..
ownership of
b6a4a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMhB..
/
bde42..
ownership of
3b744..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGZV..
/
4b1cb..
ownership of
dfab1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMXV..
/
19faf..
ownership of
65a56..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUYn..
/
e3b1a..
ownership of
0a884..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaWJ..
/
d3b3a..
ownership of
b32c3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKBV..
/
9b952..
ownership of
ac978..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXoM..
/
bcd1c..
ownership of
90889..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPxv..
/
095dc..
ownership of
4aff2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUQGM..
/
5c1e1..
doc published by
PrCmT..
Known
df_nrg__df_nlm__df_nvc__df_nmo__df_nghm__df_nmhm__df_ii__df_cncf__df_htpy__df_phtpy__df_phtpc__df_pco__df_om1__df_omn__df_pi1__df_pin__df_clm__df_cvs
:
∀ x0 : ο .
(
wceq
cnrg
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
cnm
)
(
cfv
(
cv
x1
)
cabv
)
)
(
λ x1 .
cngp
)
)
⟶
wceq
cnlm
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wa
(
wcel
(
cv
x2
)
cnrg
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cfv
(
cv
x1
)
cnm
)
)
(
co
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
cnm
)
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x1
)
cnm
)
)
cmul
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
λ x1 .
cin
cngp
clmod
)
)
⟶
wceq
cnvc
(
cin
cnlm
clvec
)
⟶
wceq
cnmo
(
cmpt2
(
λ x1 x2 .
cngp
)
(
λ x1 x2 .
cngp
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
cghm
)
(
λ x3 .
cinf
(
crab
(
λ x4 .
wral
(
λ x5 .
wbr
(
cfv
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
cnm
)
)
(
co
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cnm
)
)
cmul
)
cle
)
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x4 .
co
cc0
cpnf
cico
)
)
cxr
clt
)
)
)
⟶
wceq
cnghm
(
cmpt2
(
λ x1 x2 .
cngp
)
(
λ x1 x2 .
cngp
)
(
λ x1 x2 .
cima
(
ccnv
(
co
(
cv
x1
)
(
cv
x2
)
cnmo
)
)
cr
)
)
⟶
wceq
cnmhm
(
cmpt2
(
λ x1 x2 .
cnlm
)
(
λ x1 x2 .
cnlm
)
(
λ x1 x2 .
cin
(
co
(
cv
x1
)
(
cv
x2
)
clmhm
)
(
co
(
cv
x1
)
(
cv
x2
)
cnghm
)
)
)
⟶
wceq
cii
(
cfv
(
cres
(
ccom
cabs
cmin
)
(
cxp
(
co
cc0
c1
cicc
)
(
co
cc0
c1
cicc
)
)
)
cmopn
)
⟶
wceq
ccncf
(
cmpt2
(
λ x1 x2 .
cpw
cc
)
(
λ x1 x2 .
cpw
cc
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wrex
(
λ x6 .
wral
(
λ x7 .
wbr
(
cfv
(
co
(
cv
x4
)
(
cv
x7
)
cmin
)
cabs
)
(
cv
x6
)
clt
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x7
)
(
cv
x3
)
)
cmin
)
cabs
)
(
cv
x5
)
clt
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
crp
)
)
(
λ x5 .
crp
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
co
(
cv
x2
)
(
cv
x1
)
cmap
)
)
)
⟶
wceq
chtpy
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
co
(
cv
x1
)
(
cv
x2
)
ccn
)
(
λ x3 x4 .
co
(
cv
x1
)
(
cv
x2
)
ccn
)
(
λ x3 x4 .
crab
(
λ x5 .
wral
(
λ x6 .
wa
(
wceq
(
co
(
cv
x6
)
cc0
(
cv
x5
)
)
(
cfv
(
cv
x6
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cv
x6
)
c1
(
cv
x5
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
)
)
(
λ x6 .
cuni
(
cv
x1
)
)
)
(
λ x5 .
co
(
co
(
cv
x1
)
cii
ctx
)
(
cv
x2
)
ccn
)
)
)
)
⟶
wceq
cphtpy
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
co
cii
(
cv
x1
)
ccn
)
(
λ x2 x3 .
co
cii
(
cv
x1
)
ccn
)
(
λ x2 x3 .
crab
(
λ x4 .
wral
(
λ x5 .
wa
(
wceq
(
co
cc0
(
cv
x5
)
(
cv
x4
)
)
(
cfv
cc0
(
cv
x2
)
)
)
(
wceq
(
co
c1
(
cv
x5
)
(
cv
x4
)
)
(
cfv
c1
(
cv
x2
)
)
)
)
(
λ x5 .
co
cc0
c1
cicc
)
)
(
λ x4 .
co
(
cv
x2
)
(
cv
x3
)
(
co
cii
(
cv
x1
)
chtpy
)
)
)
)
)
⟶
wceq
cphtpc
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
co
cii
(
cv
x1
)
ccn
)
)
(
wne
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cphtpy
)
)
c0
)
)
)
)
⟶
wceq
cpco
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
co
cii
(
cv
x1
)
ccn
)
(
λ x2 x3 .
co
cii
(
cv
x1
)
ccn
)
(
λ x2 x3 .
cmpt
(
λ x4 .
co
cc0
c1
cicc
)
(
λ x4 .
cif
(
wbr
(
cv
x4
)
(
co
c1
c2
cdiv
)
cle
)
(
cfv
(
co
c2
(
cv
x4
)
cmul
)
(
cv
x2
)
)
(
cfv
(
co
(
co
c2
(
cv
x4
)
cmul
)
c1
cmin
)
(
cv
x3
)
)
)
)
)
)
⟶
wceq
comi
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
cv
x1
)
)
(
λ x1 x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
crab
(
λ x3 .
wa
(
wceq
(
cfv
cc0
(
cv
x3
)
)
(
cv
x2
)
)
(
wceq
(
cfv
c1
(
cv
x3
)
)
(
cv
x2
)
)
)
(
λ x3 .
co
cii
(
cv
x1
)
ccn
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cfv
(
cv
x1
)
cpco
)
)
(
cop
(
cfv
cnx
cts
)
(
co
(
cv
x1
)
cii
cxko
)
)
)
)
⟶
wceq
comn
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
cv
x1
)
)
(
λ x1 x2 .
cseq
(
ccom
(
cmpt2
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cop
(
co
(
cfv
(
cfv
(
cv
x3
)
c1st
)
ctopn
)
(
cfv
(
cv
x3
)
c2nd
)
comi
)
(
cxp
(
co
cc0
c1
cicc
)
(
csn
(
cfv
(
cv
x3
)
c2nd
)
)
)
)
)
c1st
)
(
cop
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cuni
(
cv
x1
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cv
x1
)
)
)
(
cv
x2
)
)
cc0
)
)
⟶
wceq
cpi1
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
cv
x1
)
)
(
λ x1 x2 .
co
(
co
(
cv
x1
)
(
cv
x2
)
comi
)
(
cfv
(
cv
x1
)
cphtpc
)
cqus
)
)
⟶
wceq
cpin
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
cuni
(
cv
x1
)
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cn0
)
(
λ x3 .
co
(
cfv
(
cfv
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
comn
)
)
c1st
)
(
cif
(
wceq
(
cv
x3
)
cc0
)
(
copab
(
λ x4 x5 .
wrex
(
λ x6 .
wa
(
wceq
(
cfv
cc0
(
cv
x6
)
)
(
cv
x4
)
)
(
wceq
(
cfv
c1
(
cv
x6
)
)
(
cv
x5
)
)
)
(
λ x6 .
co
cii
(
cv
x1
)
ccn
)
)
)
(
cfv
(
cfv
(
cfv
(
cfv
(
co
(
cv
x3
)
c1
cmin
)
(
co
(
cv
x1
)
(
cv
x2
)
comn
)
)
c1st
)
ctopn
)
cphtpc
)
)
cqus
)
)
)
⟶
wceq
cclm
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wceq
(
cv
x2
)
(
co
ccnfld
(
cv
x3
)
cress
)
)
(
wcel
(
cv
x3
)
(
cfv
ccnfld
csubrg
)
)
)
(
cfv
(
cv
x2
)
cbs
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
λ x1 .
clmod
)
)
⟶
wceq
ccvs
(
cin
cclm
clvec
)
⟶
x0
)
⟶
x0
Theorem
df_nrg
:
wceq
cnrg
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
cnm
)
(
cfv
(
cv
x0
)
cabv
)
)
(
λ x0 .
cngp
)
)
(proof)
Theorem
df_nlm
:
wceq
cnlm
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wa
(
wcel
(
cv
x1
)
cnrg
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cfv
(
cv
x0
)
cnm
)
)
(
co
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cnm
)
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x0
)
cnm
)
)
cmul
)
)
(
λ x3 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
λ x0 .
cin
cngp
clmod
)
)
(proof)
Theorem
df_nvc
:
wceq
cnvc
(
cin
cnlm
clvec
)
(proof)
Theorem
df_nmo
:
wceq
cnmo
(
cmpt2
(
λ x0 x1 .
cngp
)
(
λ x0 x1 .
cngp
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
cghm
)
(
λ x2 .
cinf
(
crab
(
λ x3 .
wral
(
λ x4 .
wbr
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cnm
)
)
(
co
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cnm
)
)
cmul
)
cle
)
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
)
(
λ x3 .
co
cc0
cpnf
cico
)
)
cxr
clt
)
)
)
(proof)
Theorem
df_nghm
:
wceq
cnghm
(
cmpt2
(
λ x0 x1 .
cngp
)
(
λ x0 x1 .
cngp
)
(
λ x0 x1 .
cima
(
ccnv
(
co
(
cv
x0
)
(
cv
x1
)
cnmo
)
)
cr
)
)
(proof)
Theorem
df_nmhm
:
wceq
cnmhm
(
cmpt2
(
λ x0 x1 .
cnlm
)
(
λ x0 x1 .
cnlm
)
(
λ x0 x1 .
cin
(
co
(
cv
x0
)
(
cv
x1
)
clmhm
)
(
co
(
cv
x0
)
(
cv
x1
)
cnghm
)
)
)
(proof)
Theorem
df_ii
:
wceq
cii
(
cfv
(
cres
(
ccom
cabs
cmin
)
(
cxp
(
co
cc0
c1
cicc
)
(
co
cc0
c1
cicc
)
)
)
cmopn
)
(proof)
Theorem
df_cncf
:
wceq
ccncf
(
cmpt2
(
λ x0 x1 .
cpw
cc
)
(
λ x0 x1 .
cpw
cc
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wrex
(
λ x5 .
wral
(
λ x6 .
wbr
(
cfv
(
co
(
cv
x3
)
(
cv
x6
)
cmin
)
cabs
)
(
cv
x5
)
clt
⟶
wbr
(
cfv
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x6
)
(
cv
x2
)
)
cmin
)
cabs
)
(
cv
x4
)
clt
)
(
λ x6 .
cv
x0
)
)
(
λ x5 .
crp
)
)
(
λ x4 .
crp
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
co
(
cv
x1
)
(
cv
x0
)
cmap
)
)
)
(proof)
Theorem
df_htpy
:
wceq
chtpy
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
(
λ x2 x3 .
co
(
cv
x0
)
(
cv
x1
)
ccn
)
(
λ x2 x3 .
crab
(
λ x4 .
wral
(
λ x5 .
wa
(
wceq
(
co
(
cv
x5
)
cc0
(
cv
x4
)
)
(
cfv
(
cv
x5
)
(
cv
x2
)
)
)
(
wceq
(
co
(
cv
x5
)
c1
(
cv
x4
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
)
)
(
λ x5 .
cuni
(
cv
x0
)
)
)
(
λ x4 .
co
(
co
(
cv
x0
)
cii
ctx
)
(
cv
x1
)
ccn
)
)
)
)
(proof)
Theorem
df_phtpy
:
wceq
cphtpy
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
co
cii
(
cv
x0
)
ccn
)
(
λ x1 x2 .
co
cii
(
cv
x0
)
ccn
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
co
cc0
(
cv
x4
)
(
cv
x3
)
)
(
cfv
cc0
(
cv
x1
)
)
)
(
wceq
(
co
c1
(
cv
x4
)
(
cv
x3
)
)
(
cfv
c1
(
cv
x1
)
)
)
)
(
λ x4 .
co
cc0
c1
cicc
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
(
co
cii
(
cv
x0
)
chtpy
)
)
)
)
)
(proof)
Theorem
df_phtpc
:
wceq
cphtpc
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wss
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
co
cii
(
cv
x0
)
ccn
)
)
(
wne
(
co
(
cv
x1
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cphtpy
)
)
c0
)
)
)
)
(proof)
Theorem
df_pco
:
wceq
cpco
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
co
cii
(
cv
x0
)
ccn
)
(
λ x1 x2 .
co
cii
(
cv
x0
)
ccn
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
cc0
c1
cicc
)
(
λ x3 .
cif
(
wbr
(
cv
x3
)
(
co
c1
c2
cdiv
)
cle
)
(
cfv
(
co
c2
(
cv
x3
)
cmul
)
(
cv
x1
)
)
(
cfv
(
co
(
co
c2
(
cv
x3
)
cmul
)
c1
cmin
)
(
cv
x2
)
)
)
)
)
)
(proof)
Theorem
df_om1
:
wceq
comi
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
cv
x0
)
)
(
λ x0 x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
crab
(
λ x2 .
wa
(
wceq
(
cfv
cc0
(
cv
x2
)
)
(
cv
x1
)
)
(
wceq
(
cfv
c1
(
cv
x2
)
)
(
cv
x1
)
)
)
(
λ x2 .
co
cii
(
cv
x0
)
ccn
)
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cfv
(
cv
x0
)
cpco
)
)
(
cop
(
cfv
cnx
cts
)
(
co
(
cv
x0
)
cii
cxko
)
)
)
)
(proof)
Theorem
df_omn
:
wceq
comn
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
cv
x0
)
)
(
λ x0 x1 .
cseq
(
ccom
(
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cop
(
co
(
cfv
(
cfv
(
cv
x2
)
c1st
)
ctopn
)
(
cfv
(
cv
x2
)
c2nd
)
comi
)
(
cxp
(
co
cc0
c1
cicc
)
(
csn
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
)
c1st
)
(
cop
(
cpr
(
cop
(
cfv
cnx
cbs
)
(
cuni
(
cv
x0
)
)
)
(
cop
(
cfv
cnx
cts
)
(
cv
x0
)
)
)
(
cv
x1
)
)
cc0
)
)
(proof)
Theorem
df_pi1
:
wceq
cpi1
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
cv
x0
)
)
(
λ x0 x1 .
co
(
co
(
cv
x0
)
(
cv
x1
)
comi
)
(
cfv
(
cv
x0
)
cphtpc
)
cqus
)
)
(proof)
Theorem
df_pin
:
wceq
cpin
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
cuni
(
cv
x0
)
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cn0
)
(
λ x2 .
co
(
cfv
(
cfv
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
comn
)
)
c1st
)
(
cif
(
wceq
(
cv
x2
)
cc0
)
(
copab
(
λ x3 x4 .
wrex
(
λ x5 .
wa
(
wceq
(
cfv
cc0
(
cv
x5
)
)
(
cv
x3
)
)
(
wceq
(
cfv
c1
(
cv
x5
)
)
(
cv
x4
)
)
)
(
λ x5 .
co
cii
(
cv
x0
)
ccn
)
)
)
(
cfv
(
cfv
(
cfv
(
cfv
(
co
(
cv
x2
)
c1
cmin
)
(
co
(
cv
x0
)
(
cv
x1
)
comn
)
)
c1st
)
ctopn
)
cphtpc
)
)
cqus
)
)
)
(proof)
Theorem
df_clm
:
wceq
cclm
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wa
(
wceq
(
cv
x1
)
(
co
ccnfld
(
cv
x2
)
cress
)
)
(
wcel
(
cv
x2
)
(
cfv
ccnfld
csubrg
)
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
λ x0 .
clmod
)
)
(proof)
Theorem
df_cvs
:
wceq
ccvs
(
cin
cclm
clvec
)
(proof)