Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr3rF../dd963..
PUa1d../7e53e..
vout
Pr3rF../53892.. 0.10 bars
TMZkk../1dc2d.. ownership of 6af17.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLqK../e7541.. ownership of d7744.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMbxt../1db03.. ownership of 3baf9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMNi4../c675b.. ownership of b150a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKSU../35b58.. ownership of c2b69.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMbFA../555d3.. ownership of f6d13.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMFuh../45f21.. ownership of a0e20.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMTXh../69ab5.. ownership of 32714.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMURh../7fd73.. ownership of 71595.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMa33../27b00.. ownership of a04e1.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMVqe../42dd5.. ownership of 994ef.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKrV../8053b.. ownership of 2953c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcqN../95372.. ownership of 527d9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMb2K../1bf1b.. ownership of 6b473.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMLZt../3491e.. ownership of c1362.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMMEm../82990.. ownership of 3d0b9.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMP41../89103.. ownership of c0b86.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMP3h../d8258.. ownership of 4d7d4.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMSPr../55afc.. ownership of ec946.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMRaA../d903c.. ownership of 0ea96.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMR8D../4c4ac.. ownership of 9fdb3.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMdRZ../59f9d.. ownership of 9aa0d.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKpm../55350.. ownership of 94f9c.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMcLM../608b0.. ownership of 8851f.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGYF../cc999.. ownership of 47773.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMduw../0e1de.. ownership of e136b.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGWU../32ac3.. ownership of eee08.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMX1m../4cd03.. ownership of b6a4a.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMMhB../bde42.. ownership of 3b744.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMGZV../4b1cb.. ownership of dfab1.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMMXV../19faf.. ownership of 65a56.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMUYn../e3b1a.. ownership of 0a884.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMaWJ../d3b3a.. ownership of b32c3.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMKBV../9b952.. ownership of ac978.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMXoM../bcd1c.. ownership of 90889.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
TMPxv../095dc.. ownership of 4aff2.. as prop with payaddr PrCmT.. rights free controlledby PrCmT.. upto 0
PUQGM../5c1e1.. doc published by PrCmT..
Known df_nrg__df_nlm__df_nvc__df_nmo__df_nghm__df_nmhm__df_ii__df_cncf__df_htpy__df_phtpy__df_phtpc__df_pco__df_om1__df_omn__df_pi1__df_pin__df_clm__df_cvs : ∀ x0 : ο . (wceq cnrg (crab (λ x1 . wcel (cfv (cv x1) cnm) (cfv (cv x1) cabv)) (λ x1 . cngp))wceq cnlm (crab (λ x1 . wsbc (λ x2 . wa (wcel (cv x2) cnrg) (wral (λ x3 . wral (λ x4 . wceq (cfv (co (cv x3) (cv x4) (cfv (cv x1) cvsca)) (cfv (cv x1) cnm)) (co (cfv (cv x3) (cfv (cv x2) cnm)) (cfv (cv x4) (cfv (cv x1) cnm)) cmul)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x2) cbs))) (cfv (cv x1) csca)) (λ x1 . cin cngp clmod))wceq cnvc (cin cnlm clvec)wceq cnmo (cmpt2 (λ x1 x2 . cngp) (λ x1 x2 . cngp) (λ x1 x2 . cmpt (λ x3 . co (cv x1) (cv x2) cghm) (λ x3 . cinf (crab (λ x4 . wral (λ x5 . wbr (cfv (cfv (cv x5) (cv x3)) (cfv (cv x2) cnm)) (co (cv x4) (cfv (cv x5) (cfv (cv x1) cnm)) cmul) cle) (λ x5 . cfv (cv x1) cbs)) (λ x4 . co cc0 cpnf cico)) cxr clt)))wceq cnghm (cmpt2 (λ x1 x2 . cngp) (λ x1 x2 . cngp) (λ x1 x2 . cima (ccnv (co (cv x1) (cv x2) cnmo)) cr))wceq cnmhm (cmpt2 (λ x1 x2 . cnlm) (λ x1 x2 . cnlm) (λ x1 x2 . cin (co (cv x1) (cv x2) clmhm) (co (cv x1) (cv x2) cnghm)))wceq cii (cfv (cres (ccom cabs cmin) (cxp (co cc0 c1 cicc) (co cc0 c1 cicc))) cmopn)wceq ccncf (cmpt2 (λ x1 x2 . cpw cc) (λ x1 x2 . cpw cc) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wrex (λ x6 . wral (λ x7 . wbr (cfv (co (cv x4) (cv x7) cmin) cabs) (cv x6) cltwbr (cfv (co (cfv (cv x4) (cv x3)) (cfv (cv x7) (cv x3)) cmin) cabs) (cv x5) clt) (λ x7 . cv x1)) (λ x6 . crp)) (λ x5 . crp)) (λ x4 . cv x1)) (λ x3 . co (cv x2) (cv x1) cmap)))wceq chtpy (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . ctop) (λ x1 x2 . cmpt2 (λ x3 x4 . co (cv x1) (cv x2) ccn) (λ x3 x4 . co (cv x1) (cv x2) ccn) (λ x3 x4 . crab (λ x5 . wral (λ x6 . wa (wceq (co (cv x6) cc0 (cv x5)) (cfv (cv x6) (cv x3))) (wceq (co (cv x6) c1 (cv x5)) (cfv (cv x6) (cv x4)))) (λ x6 . cuni (cv x1))) (λ x5 . co (co (cv x1) cii ctx) (cv x2) ccn))))wceq cphtpy (cmpt (λ x1 . ctop) (λ x1 . cmpt2 (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . crab (λ x4 . wral (λ x5 . wa (wceq (co cc0 (cv x5) (cv x4)) (cfv cc0 (cv x2))) (wceq (co c1 (cv x5) (cv x4)) (cfv c1 (cv x2)))) (λ x5 . co cc0 c1 cicc)) (λ x4 . co (cv x2) (cv x3) (co cii (cv x1) chtpy)))))wceq cphtpc (cmpt (λ x1 . ctop) (λ x1 . copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (co cii (cv x1) ccn)) (wne (co (cv x2) (cv x3) (cfv (cv x1) cphtpy)) c0))))wceq cpco (cmpt (λ x1 . ctop) (λ x1 . cmpt2 (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . cmpt (λ x4 . co cc0 c1 cicc) (λ x4 . cif (wbr (cv x4) (co c1 c2 cdiv) cle) (cfv (co c2 (cv x4) cmul) (cv x2)) (cfv (co (co c2 (cv x4) cmul) c1 cmin) (cv x3))))))wceq comi (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . ctp (cop (cfv cnx cbs) (crab (λ x3 . wa (wceq (cfv cc0 (cv x3)) (cv x2)) (wceq (cfv c1 (cv x3)) (cv x2))) (λ x3 . co cii (cv x1) ccn))) (cop (cfv cnx cplusg) (cfv (cv x1) cpco)) (cop (cfv cnx cts) (co (cv x1) cii cxko))))wceq comn (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . cseq (ccom (cmpt2 (λ x3 x4 . cvv) (λ x3 x4 . cvv) (λ x3 x4 . cop (co (cfv (cfv (cv x3) c1st) ctopn) (cfv (cv x3) c2nd) comi) (cxp (co cc0 c1 cicc) (csn (cfv (cv x3) c2nd))))) c1st) (cop (cpr (cop (cfv cnx cbs) (cuni (cv x1))) (cop (cfv cnx cts) (cv x1))) (cv x2)) cc0))wceq cpi1 (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . co (co (cv x1) (cv x2) comi) (cfv (cv x1) cphtpc) cqus))wceq cpin (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . cmpt (λ x3 . cn0) (λ x3 . co (cfv (cfv (cv x3) (co (cv x1) (cv x2) comn)) c1st) (cif (wceq (cv x3) cc0) (copab (λ x4 x5 . wrex (λ x6 . wa (wceq (cfv cc0 (cv x6)) (cv x4)) (wceq (cfv c1 (cv x6)) (cv x5))) (λ x6 . co cii (cv x1) ccn))) (cfv (cfv (cfv (cfv (co (cv x3) c1 cmin) (co (cv x1) (cv x2) comn)) c1st) ctopn) cphtpc)) cqus)))wceq cclm (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wa (wceq (cv x2) (co ccnfld (cv x3) cress)) (wcel (cv x3) (cfv ccnfld csubrg))) (cfv (cv x2) cbs)) (cfv (cv x1) csca)) (λ x1 . clmod))wceq ccvs (cin cclm clvec)x0)x0
Theorem df_nrg : wceq cnrg (crab (λ x0 . wcel (cfv (cv x0) cnm) (cfv (cv x0) cabv)) (λ x0 . cngp)) (proof)
Theorem df_nlm : wceq cnlm (crab (λ x0 . wsbc (λ x1 . wa (wcel (cv x1) cnrg) (wral (λ x2 . wral (λ x3 . wceq (cfv (co (cv x2) (cv x3) (cfv (cv x0) cvsca)) (cfv (cv x0) cnm)) (co (cfv (cv x2) (cfv (cv x1) cnm)) (cfv (cv x3) (cfv (cv x0) cnm)) cmul)) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cv x1) cbs))) (cfv (cv x0) csca)) (λ x0 . cin cngp clmod)) (proof)
Theorem df_nvc : wceq cnvc (cin cnlm clvec) (proof)
Theorem df_nmo : wceq cnmo (cmpt2 (λ x0 x1 . cngp) (λ x0 x1 . cngp) (λ x0 x1 . cmpt (λ x2 . co (cv x0) (cv x1) cghm) (λ x2 . cinf (crab (λ x3 . wral (λ x4 . wbr (cfv (cfv (cv x4) (cv x2)) (cfv (cv x1) cnm)) (co (cv x3) (cfv (cv x4) (cfv (cv x0) cnm)) cmul) cle) (λ x4 . cfv (cv x0) cbs)) (λ x3 . co cc0 cpnf cico)) cxr clt))) (proof)
Theorem df_nghm : wceq cnghm (cmpt2 (λ x0 x1 . cngp) (λ x0 x1 . cngp) (λ x0 x1 . cima (ccnv (co (cv x0) (cv x1) cnmo)) cr)) (proof)
Theorem df_nmhm : wceq cnmhm (cmpt2 (λ x0 x1 . cnlm) (λ x0 x1 . cnlm) (λ x0 x1 . cin (co (cv x0) (cv x1) clmhm) (co (cv x0) (cv x1) cnghm))) (proof)
Theorem df_ii : wceq cii (cfv (cres (ccom cabs cmin) (cxp (co cc0 c1 cicc) (co cc0 c1 cicc))) cmopn) (proof)
Theorem df_cncf : wceq ccncf (cmpt2 (λ x0 x1 . cpw cc) (λ x0 x1 . cpw cc) (λ x0 x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wrex (λ x5 . wral (λ x6 . wbr (cfv (co (cv x3) (cv x6) cmin) cabs) (cv x5) cltwbr (cfv (co (cfv (cv x3) (cv x2)) (cfv (cv x6) (cv x2)) cmin) cabs) (cv x4) clt) (λ x6 . cv x0)) (λ x5 . crp)) (λ x4 . crp)) (λ x3 . cv x0)) (λ x2 . co (cv x1) (cv x0) cmap))) (proof)
Theorem df_htpy : wceq chtpy (cmpt2 (λ x0 x1 . ctop) (λ x0 x1 . ctop) (λ x0 x1 . cmpt2 (λ x2 x3 . co (cv x0) (cv x1) ccn) (λ x2 x3 . co (cv x0) (cv x1) ccn) (λ x2 x3 . crab (λ x4 . wral (λ x5 . wa (wceq (co (cv x5) cc0 (cv x4)) (cfv (cv x5) (cv x2))) (wceq (co (cv x5) c1 (cv x4)) (cfv (cv x5) (cv x3)))) (λ x5 . cuni (cv x0))) (λ x4 . co (co (cv x0) cii ctx) (cv x1) ccn)))) (proof)
Theorem df_phtpy : wceq cphtpy (cmpt (λ x0 . ctop) (λ x0 . cmpt2 (λ x1 x2 . co cii (cv x0) ccn) (λ x1 x2 . co cii (cv x0) ccn) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wa (wceq (co cc0 (cv x4) (cv x3)) (cfv cc0 (cv x1))) (wceq (co c1 (cv x4) (cv x3)) (cfv c1 (cv x1)))) (λ x4 . co cc0 c1 cicc)) (λ x3 . co (cv x1) (cv x2) (co cii (cv x0) chtpy))))) (proof)
Theorem df_phtpc : wceq cphtpc (cmpt (λ x0 . ctop) (λ x0 . copab (λ x1 x2 . wa (wss (cpr (cv x1) (cv x2)) (co cii (cv x0) ccn)) (wne (co (cv x1) (cv x2) (cfv (cv x0) cphtpy)) c0)))) (proof)
Theorem df_pco : wceq cpco (cmpt (λ x0 . ctop) (λ x0 . cmpt2 (λ x1 x2 . co cii (cv x0) ccn) (λ x1 x2 . co cii (cv x0) ccn) (λ x1 x2 . cmpt (λ x3 . co cc0 c1 cicc) (λ x3 . cif (wbr (cv x3) (co c1 c2 cdiv) cle) (cfv (co c2 (cv x3) cmul) (cv x1)) (cfv (co (co c2 (cv x3) cmul) c1 cmin) (cv x2)))))) (proof)
Theorem df_om1 : wceq comi (cmpt2 (λ x0 x1 . ctop) (λ x0 x1 . cuni (cv x0)) (λ x0 x1 . ctp (cop (cfv cnx cbs) (crab (λ x2 . wa (wceq (cfv cc0 (cv x2)) (cv x1)) (wceq (cfv c1 (cv x2)) (cv x1))) (λ x2 . co cii (cv x0) ccn))) (cop (cfv cnx cplusg) (cfv (cv x0) cpco)) (cop (cfv cnx cts) (co (cv x0) cii cxko)))) (proof)
Theorem df_omn : wceq comn (cmpt2 (λ x0 x1 . ctop) (λ x0 x1 . cuni (cv x0)) (λ x0 x1 . cseq (ccom (cmpt2 (λ x2 x3 . cvv) (λ x2 x3 . cvv) (λ x2 x3 . cop (co (cfv (cfv (cv x2) c1st) ctopn) (cfv (cv x2) c2nd) comi) (cxp (co cc0 c1 cicc) (csn (cfv (cv x2) c2nd))))) c1st) (cop (cpr (cop (cfv cnx cbs) (cuni (cv x0))) (cop (cfv cnx cts) (cv x0))) (cv x1)) cc0)) (proof)
Theorem df_pi1 : wceq cpi1 (cmpt2 (λ x0 x1 . ctop) (λ x0 x1 . cuni (cv x0)) (λ x0 x1 . co (co (cv x0) (cv x1) comi) (cfv (cv x0) cphtpc) cqus)) (proof)
Theorem df_pin : wceq cpin (cmpt2 (λ x0 x1 . ctop) (λ x0 x1 . cuni (cv x0)) (λ x0 x1 . cmpt (λ x2 . cn0) (λ x2 . co (cfv (cfv (cv x2) (co (cv x0) (cv x1) comn)) c1st) (cif (wceq (cv x2) cc0) (copab (λ x3 x4 . wrex (λ x5 . wa (wceq (cfv cc0 (cv x5)) (cv x3)) (wceq (cfv c1 (cv x5)) (cv x4))) (λ x5 . co cii (cv x0) ccn))) (cfv (cfv (cfv (cfv (co (cv x2) c1 cmin) (co (cv x0) (cv x1) comn)) c1st) ctopn) cphtpc)) cqus))) (proof)
Theorem df_clm : wceq cclm (crab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wa (wceq (cv x1) (co ccnfld (cv x2) cress)) (wcel (cv x2) (cfv ccnfld csubrg))) (cfv (cv x1) cbs)) (cfv (cv x0) csca)) (λ x0 . clmod)) (proof)
Theorem df_cvs : wceq ccvs (cin cclm clvec) (proof)