vout |
---|
Pr8Ky../8fe94.. 0.00 barsTMQwQ../0df74.. ownership of 48e2b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMKL8../7aebe.. ownership of 1e843.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUVCf../97011.. doc published by Pr4zB..Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseKnown 807bb.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ x8 x6 ⟶ x8 x7 ⟶ ∀ x9 . x0 x9 ⟶ x8 x9) ⟶ (∀ x8 . x0 x8 ⟶ not (x1 x8) ⟶ ∀ x9 : ι → ο . x9 x6 ⟶ x9 x7 ⟶ x9 x8) ⟶ x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ ∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x6)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x2 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x7 x9)) ⟶ ∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 . x0 x10 ⟶ x0 x11 ⟶ x9 x10 x11 x7 x7) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x6 x7 x10) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x7 x7 x10) ⟶ x9 x2 x6 x2 x7 ⟶ x9 x2 x6 x3 x6 ⟶ x9 x2 x6 x3 x7 ⟶ x9 x2 x6 x4 x6 ⟶ x9 x2 x6 x4 x7 ⟶ x9 x2 x6 x5 x6 ⟶ x9 x2 x6 x5 x7 ⟶ x9 x2 x6 x6 x6 ⟶ x9 x2 x6 x6 x7 ⟶ x9 x2 x6 x7 x6 ⟶ x9 x2 x7 x3 x7 ⟶ x9 x2 x7 x4 x7 ⟶ x9 x2 x7 x5 x7 ⟶ x9 x2 x7 x6 x7 ⟶ x9 x3 x6 x2 x7 ⟶ x9 x3 x6 x3 x7 ⟶ x9 x3 x6 x4 x6 ⟶ x9 x3 x6 x4 x7 ⟶ x9 x3 x6 x5 x6 ⟶ x9 x3 x6 x5 x7 ⟶ x9 x3 x6 x6 x6 ⟶ x9 x3 x6 x6 x7 ⟶ x9 x3 x6 x7 x6 ⟶ x9 x3 x7 x4 x7 ⟶ x9 x3 x7 x5 x7 ⟶ x9 x3 x7 x6 x7 ⟶ x9 x4 x6 x2 x7 ⟶ x9 x4 x6 x3 x7 ⟶ x9 x4 x6 x4 x7 ⟶ x9 x4 x6 x5 x6 ⟶ x9 x4 x6 x5 x7 ⟶ x9 x4 x6 x6 x6 ⟶ x9 x4 x6 x6 x7 ⟶ x9 x4 x6 x7 x6 ⟶ x9 x4 x7 x5 x7 ⟶ x9 x4 x7 x6 x7 ⟶ x9 x5 x6 x2 x7 ⟶ x9 x5 x6 x3 x7 ⟶ x9 x5 x6 x4 x7 ⟶ x9 x5 x6 x5 x7 ⟶ x9 x5 x6 x6 x6 ⟶ x9 x5 x6 x6 x7 ⟶ x9 x5 x6 x7 x6 ⟶ x9 x5 x7 x6 x7 ⟶ x9 x6 x6 x2 x7 ⟶ x9 x6 x6 x3 x7 ⟶ x9 x6 x6 x4 x7 ⟶ x9 x6 x6 x5 x7 ⟶ x9 x6 x6 x6 x7 ⟶ x9 x7 x6 x2 x7 ⟶ x9 x7 x6 x3 x7 ⟶ x9 x7 x6 x4 x7 ⟶ x9 x7 x6 x5 x7 ⟶ x9 x7 x6 x6 x7 ⟶ (∀ x10 x11 . x0 x10 ⟶ x0 x11 ⟶ x9 x10 x11 x10 x11) ⟶ (∀ x10 x11 x12 x13 . x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x9 x10 x11 x12 x13 ⟶ x9 x12 x13 x10 x11) ⟶ (x4 = x5 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x7 ⟶ ∀ x10 : ο . x10) ⟶ ∀ x10 . x0 x10 ⟶ ∀ x11 . x0 x11 ⟶ ∀ x12 . x0 x12 ⟶ ∀ x13 . x0 x13 ⟶ ∀ x14 . x0 x14 ⟶ ∀ x15 . x0 x15 ⟶ ∀ x16 . x0 x16 ⟶ ∀ x17 . x0 x17 ⟶ ∀ x18 . x0 x18 ⟶ ∀ x19 . x0 x19 ⟶ ∀ x20 . x0 x20 ⟶ ∀ x21 . x0 x21 ⟶ not (x1 x11) ⟶ not (x1 x13) ⟶ not (x1 x15) ⟶ not (x1 x17) ⟶ not (x1 x19) ⟶ not (x1 x21) ⟶ x8 x10 x11 x12 x13 ⟶ x8 x12 x13 x14 x15 ⟶ x8 x14 x15 x16 x17 ⟶ x8 x16 x17 x18 x19 ⟶ x8 x18 x19 x20 x21 ⟶ not (x9 x10 x11 x12 x13) ⟶ not (x9 x10 x11 x14 x15) ⟶ not (x9 x10 x11 x16 x17) ⟶ not (x9 x10 x11 x18 x19) ⟶ not (x9 x10 x11 x20 x21) ⟶ not (x9 x12 x13 x14 x15) ⟶ not (x9 x12 x13 x16 x17) ⟶ not (x9 x12 x13 x18 x19) ⟶ not (x9 x12 x13 x20 x21) ⟶ not (x9 x14 x15 x16 x17) ⟶ not (x9 x14 x15 x18 x19) ⟶ not (x9 x14 x15 x20 x21) ⟶ not (x9 x16 x17 x18 x19) ⟶ not (x9 x16 x17 x20 x21) ⟶ not (x9 x18 x19 x20 x21) ⟶ FalseKnown FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem 48e2b.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ x8 x6 ⟶ x8 x7 ⟶ ∀ x9 . x0 x9 ⟶ x8 x9) ⟶ (∀ x8 . x0 x8 ⟶ not (x1 x8) ⟶ ∀ x9 : ι → ο . x9 x6 ⟶ x9 x7 ⟶ x9 x8) ⟶ x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ not (x1 x6) ⟶ not (x1 x7) ⟶ ∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x3 x10 x2)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x4 x10 x2)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x5 x10 x2)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x2)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x2)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x4 x10 x3)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x5 x10 x3)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x3)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x3)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x5 x10 x4)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x4)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x4)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x5)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x5)) ⟶ (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x6)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x2 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x7 x9)) ⟶ ∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 x12 x13 . x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ ∀ x14 : ο . (x8 x10 x11 x12 x13 ⟶ x14) ⟶ (x9 x10 x11 x12 x13 ⟶ x14) ⟶ (x8 x12 x13 x10 x11 ⟶ x14) ⟶ x14) ⟶ (∀ x10 x11 x12 x13 . x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x9 x10 x11 x12 x13 ⟶ x9 x12 x13 x10 x11) ⟶ (∀ x10 x11 . x0 x10 ⟶ x0 x11 ⟶ x9 x10 x11 x7 x7) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x6 x7 x10) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x7 x7 x10) ⟶ x9 x2 x6 x2 x7 ⟶ x9 x2 x6 x3 x6 ⟶ x9 x2 x6 x3 x7 ⟶ x9 x2 x6 x4 x6 ⟶ x9 x2 x6 x4 x7 ⟶ x9 x2 x6 x5 x6 ⟶ x9 x2 x6 x5 x7 ⟶ x9 x2 x6 x6 x6 ⟶ x9 x2 x6 x6 x7 ⟶ x9 x2 x6 x7 x6 ⟶ x9 x2 x7 x3 x7 ⟶ x9 x2 x7 x4 x7 ⟶ x9 x2 x7 x5 x7 ⟶ x9 x2 x7 x6 x7 ⟶ x9 x3 x6 x2 x7 ⟶ x9 x3 x6 x3 x7 ⟶ x9 x3 x6 x4 x6 ⟶ x9 x3 x6 x4 x7 ⟶ x9 x3 x6 x5 x6 ⟶ x9 x3 x6 x5 x7 ⟶ x9 x3 x6 x6 x6 ⟶ x9 x3 x6 x6 x7 ⟶ x9 x3 x6 x7 x6 ⟶ x9 x3 x7 x4 x7 ⟶ x9 x3 x7 x5 x7 ⟶ x9 x3 x7 x6 x7 ⟶ x9 x4 x6 x2 x7 ⟶ x9 x4 x6 x3 x7 ⟶ x9 x4 x6 x4 x7 ⟶ x9 x4 x6 x5 x6 ⟶ x9 x4 x6 x5 x7 ⟶ x9 x4 x6 x6 x6 ⟶ x9 x4 x6 x6 x7 ⟶ x9 x4 x6 x7 x6 ⟶ x9 x4 x7 x5 x7 ⟶ x9 x4 x7 x6 x7 ⟶ x9 x5 x6 x2 x7 ⟶ x9 x5 x6 x3 x7 ⟶ x9 x5 x6 x4 x7 ⟶ x9 x5 x6 x5 x7 ⟶ x9 x5 x6 x6 x6 ⟶ x9 x5 x6 x6 x7 ⟶ x9 x5 x6 x7 x6 ⟶ x9 x5 x7 x6 x7 ⟶ x9 x6 x6 x2 x7 ⟶ x9 x6 x6 x3 x7 ⟶ x9 x6 x6 x4 x7 ⟶ x9 x6 x6 x5 x7 ⟶ x9 x6 x6 x6 x7 ⟶ x9 x7 x6 x2 x7 ⟶ x9 x7 x6 x3 x7 ⟶ x9 x7 x6 x4 x7 ⟶ x9 x7 x6 x5 x7 ⟶ x9 x7 x6 x6 x7 ⟶ (∀ x10 x11 . x0 x10 ⟶ x0 x11 ⟶ x9 x10 x11 x10 x11) ⟶ (∀ x10 x11 x12 x13 . x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x9 x10 x11 x12 x13 ⟶ x9 x12 x13 x10 x11) ⟶ (x4 = x5 ⟶ ∀ x10 : ο . x10) ⟶ (x5 = x6 ⟶ ∀ x10 : ο . x10) ⟶ (x6 = x7 ⟶ ∀ x10 : ο . x10) ⟶ ∀ x10 . x0 x10 ⟶ ∀ x11 . x0 x11 ⟶ ∀ x12 . x0 x12 ⟶ ∀ x13 . x0 x13 ⟶ ∀ x14 . x0 x14 ⟶ ∀ x15 . x0 x15 ⟶ ∀ x16 . x0 x16 ⟶ ∀ x17 . x0 x17 ⟶ ∀ x18 . x0 x18 ⟶ ∀ x19 . x0 x19 ⟶ ∀ x20 . x0 x20 ⟶ ∀ x21 . x0 x21 ⟶ not (x1 x11) ⟶ x8 x10 x11 x12 x13 ⟶ x8 x12 x13 x14 x15 ⟶ x8 x14 x15 x16 x17 ⟶ x8 x16 x17 x18 x19 ⟶ x8 x18 x19 x20 x21 ⟶ not (x9 x10 x11 x12 x13) ⟶ not (x9 x10 x11 x14 x15) ⟶ not (x9 x10 x11 x16 x17) ⟶ not (x9 x10 x11 x18 x19) ⟶ not (x9 x10 x11 x20 x21) ⟶ not (x9 x12 x13 x14 x15) ⟶ not (x9 x12 x13 x16 x17) ⟶ not (x9 x12 x13 x18 x19) ⟶ not (x9 x12 x13 x20 x21) ⟶ not (x9 x14 x15 x16 x17) ⟶ not (x9 x14 x15 x18 x19) ⟶ not (x9 x14 x15 x20 x21) ⟶ not (x9 x16 x17 x18 x19) ⟶ not (x9 x16 x17 x20 x21) ⟶ not (x9 x18 x19 x20 x21) ⟶ False (proof) |
|