Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . ((∀ x1 x2 x3 : ι → ι → ο . ∀ x4 . wceq (cdit x1 x2 x3) (cif (wbr (x1 x4) (x2 x4) cle) (citg (λ x5 . co (x1 x5) (x2 x5) cioo) x3) (cneg (citg (λ x5 . co (x2 x5) (x1 x5) cioo) x3))))wceq climc (cmpt2 (λ x1 x2 . co cc cc cpm) (λ x1 x2 . cc) (λ x1 x2 . cab (λ x3 . wsbc (λ x4 . wcel (cmpt (λ x5 . cun (cdm (cv x1)) (csn (cv x2))) (λ x5 . cif (wceq (cv x5) (cv x2)) (cv x3) (cfv (cv x5) (cv x1)))) (cfv (cv x2) (co (co (cv x4) (cun (cdm (cv x1)) (csn (cv x2))) crest) (cv x4) ccnp))) (cfv ccnfld ctopn))))wceq cdv (cmpt2 (λ x1 x2 . cpw cc) (λ x1 x2 . co cc (cv x1) cpm) (λ x1 x2 . ciun (λ x3 . cfv (cdm (cv x2)) (cfv (co (cfv ccnfld ctopn) (cv x1) crest) cnt)) (λ x3 . cxp (csn (cv x3)) (co (cmpt (λ x4 . cdif (cdm (cv x2)) (csn (cv x3))) (λ x4 . co (co (cfv (cv x4) (cv x2)) (cfv (cv x3) (cv x2)) cmin) (co (cv x4) (cv x3) cmin) cdiv)) (cv x3) climc))))wceq cdvn (cmpt2 (λ x1 x2 . cpw cc) (λ x1 x2 . co cc (cv x1) cpm) (λ x1 x2 . cseq (ccom (cmpt (λ x3 . cvv) (λ x3 . co (cv x1) (cv x3) cdv)) c1st) (cxp cn0 (csn (cv x2))) cc0))wceq ccpn (cmpt (λ x1 . cpw cc) (λ x1 . cmpt (λ x2 . cn0) (λ x2 . crab (λ x3 . wcel (cfv (cv x2) (co (cv x1) (cv x3) cdvn)) (co (cdm (cv x3)) cc ccncf)) (λ x3 . co cc (cv x1) cpm))))wceq cmdg (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cfv (co (cv x1) (cv x2) cmpl) cbs) (λ x3 . csup (crn (cmpt (λ x4 . co (cv x3) (cfv (cv x2) c0g) csupp) (λ x4 . co ccnfld (cv x4) cgsu))) cxr clt)))wceq cdg1 (cmpt (λ x1 . cvv) (λ x1 . co c1o (cv x1) cmdg))wceq cmn1 (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wa (wne (cv x2) (cfv (cfv (cv x1) cpl1) c0g)) (wceq (cfv (cfv (cv x2) (cfv (cv x1) cdg1)) (cfv (cv x2) cco1)) (cfv (cv x1) cur))) (λ x2 . cfv (cfv (cv x1) cpl1) cbs)))wceq cuc1p (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wa (wne (cv x2) (cfv (cfv (cv x1) cpl1) c0g)) (wcel (cfv (cfv (cv x2) (cfv (cv x1) cdg1)) (cfv (cv x2) cco1)) (cfv (cv x1) cui))) (λ x2 . cfv (cfv (cv x1) cpl1) cbs)))wceq cq1p (cmpt (λ x1 . cvv) (λ x1 . csb (cfv (cv x1) cpl1) (λ x2 . csb (cfv (cv x2) cbs) (λ x3 . cmpt2 (λ x4 x5 . cv x3) (λ x4 x5 . cv x3) (λ x4 x5 . crio (λ x6 . wbr (cfv (co (cv x4) (co (cv x6) (cv x5) (cfv (cv x2) cmulr)) (cfv (cv x2) csg)) (cfv (cv x1) cdg1)) (cfv (cv x5) (cfv (cv x1) cdg1)) clt) (λ x6 . cv x3))))))wceq cr1p (cmpt (λ x1 . cvv) (λ x1 . csb (cfv (cfv (cv x1) cpl1) cbs) (λ x2 . cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . co (cv x3) (co (co (cv x3) (cv x4) (cfv (cv x1) cq1p)) (cv x4) (cfv (cfv (cv x1) cpl1) cmulr)) (cfv (cfv (cv x1) cpl1) csg)))))wceq cig1p (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cfv (cv x1) cpl1) clidl) (λ x2 . cif (wceq (cv x2) (csn (cfv (cfv (cv x1) cpl1) c0g))) (cfv (cfv (cv x1) cpl1) c0g) (crio (λ x3 . wceq (cfv (cv x3) (cfv (cv x1) cdg1)) (cinf (cima (cfv (cv x1) cdg1) (cdif (cv x2) (csn (cfv (cfv (cv x1) cpl1) c0g)))) cr clt)) (λ x3 . cin (cv x2) (cfv (cv x1) cmn1))))))wceq cply (cmpt (λ x1 . cpw cc) (λ x1 . cab (λ x2 . wrex (λ x3 . wrex (λ x4 . wceq (cv x2) (cmpt (λ x5 . cc) (λ x5 . csu (co cc0 (cv x3) cfz) (λ x6 . co (cfv (cv x6) (cv x4)) (co (cv x5) (cv x6) cexp) cmul)))) (λ x4 . co (cun (cv x1) (csn cc0)) cn0 cmap)) (λ x3 . cn0))))wceq cidp (cres cid cc)wceq ccoe (cmpt (λ x1 . cfv cc cply) (λ x1 . crio (λ x2 . wrex (λ x3 . wa (wceq (cima (cv x2) (cfv (co (cv x3) c1 caddc) cuz)) (csn cc0)) (wceq (cv x1) (cmpt (λ x4 . cc) (λ x4 . csu (co cc0 (cv x3) cfz) (λ x5 . co (cfv (cv x5) (cv x2)) (co (cv x4) (cv x5) cexp) cmul))))) (λ x3 . cn0)) (λ x2 . co cc cn0 cmap)))wceq cdgr (cmpt (λ x1 . cfv cc cply) (λ x1 . csup (cima (ccnv (cfv (cv x1) ccoe)) (cdif cc (csn cc0))) cn0 clt))wceq cquot (cmpt2 (λ x1 x2 . cfv cc cply) (λ x1 x2 . cdif (cfv cc cply) (csn c0p)) (λ x1 x2 . crio (λ x3 . wsbc (λ x4 . wo (wceq (cv x4) c0p) (wbr (cfv (cv x4) cdgr) (cfv (cv x2) cdgr) clt)) (co (cv x1) (co (cv x2) (cv x3) (cof cmul)) (cof cmin))) (λ x3 . cfv cc cply)))wceq caa (ciun (λ x1 . cdif (cfv cz cply) (csn c0p)) (λ x1 . cima (ccnv (cv x1)) (csn cc0)))x0)x0
type
prop
theory
SetMM
name
df_ditg__df_limc__df_dv__df_dvn__df_cpn__df_mdeg__df_deg1__df_mon1__df_uc1p__df_q1p__df_r1p__df_ig1p__df_ply__df_idp__df_coe__df_dgr__df_quot__df_aa
proof
PUV1k..
Megalodon
-
proofgold address
TMVbL..
creator
36224 PrCmT../77173..
owner
36224 PrCmT../77173..
term root
d0b52..