(∀ x0 : (((((ι → ι) → ι) → ι → ι → ι) → ι) → (ι → ι → ι) → ι) → ι → ο . ∀ x1 : (ι → ι) → ((((ι → ι) → ι) → ι) → ι) → ι → ο . ∀ x2 : (ι → ι → ι) → ((((ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι → ι) → ο . ∀ x3 : (ι → ι → ι) → ι → ι → ι → ο . (∀ x4 : ι → (ι → ι → ι) → ι → ι → ι . ∀ x5 x6 x7 . In (setsum (x4 (Inj1 0) (λ x8 x9 . setsum (setsum 0 0) (setsum 0 0)) x5 0) (setsum (x4 (Inj0 0) (λ x8 x9 . 0) (setsum 0 0) 0) (setsum (Inj1 0) 0))) (Inj1 (setsum x6 0)) ⟶ x0 (λ x8 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x9 : ι → ι → ι . setsum 0 (setsum (x9 (Inj1 0) (x9 0 0)) x7)) (x4 (setsum (x4 (setsum 0 0) (λ x8 x9 . setsum 0 0) x5 (setsum 0 0)) x7) (λ x8 x9 . x9) (setsum (Inj1 (x4 0 (λ x8 x9 . 0) 0 0)) (Inj1 (Inj1 0))) 0) ⟶ x3 (λ x8 x9 . x9) (setsum x5 0) (Inj1 0) x6) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x7 . In (Inj1 0) (setsum 0 0) ⟶ x3 (λ x8 x9 . 0) (setsum 0 (setsum 0 (Inj1 0))) 0 (Inj1 0) ⟶ x1 (λ x8 . setsum (setsum (Inj0 (x5 0 (λ x9 . 0))) x8) 0) (λ x8 : ((ι → ι) → ι) → ι . Inj1 0) (Inj1 (setsum (Inj1 (setsum 0 0)) (x5 0 (λ x8 . 0))))) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → (ι → ι) → ι → ι) → ι → ι . ∀ x6 : (ι → ι) → ι → ι . ∀ x7 : (ι → ι) → ι . In (Inj1 (x4 (setsum (x6 (λ x8 . 0) 0) (setsum 0 0)))) (setsum (x4 (setsum (Inj0 0) 0)) (x4 0)) ⟶ x2 (λ x8 x9 . x7 (λ x10 . 0)) (λ x8 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x9 x10 . setsum (Inj0 0) 0)) ⟶ (∀ x4 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι → ι . ∀ x5 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x6 : ι → ((ι → ι) → ι) → ι → ι → ι . ∀ x7 . In (setsum 0 (setsum (setsum (Inj0 0) 0) (x5 (λ x8 : (ι → ι) → ι → ι . λ x9 : ι → ι . λ x10 . Inj0 0) (λ x8 x9 . 0) (λ x8 . x5 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . 0) (λ x9 x10 . 0) (λ x9 . 0))))) (Inj1 (x5 (λ x8 : (ι → ι) → ι → ι . λ x9 : ι → ι . λ x10 . setsum x10 0) (λ x8 x9 . x8) (λ x8 . Inj1 (Inj1 0)))) ⟶ x2 (λ x8 x9 . 0) (λ x8 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x9 x10 . Inj1 (Inj0 0)) ⟶ x1 (λ x8 . Inj1 0) (λ x8 : ((ι → ι) → ι) → ι . setsum (setsum (setsum (setsum 0 0) (Inj1 0)) (setsum 0 x7)) 0) (setsum (setsum (x4 (λ x8 : (ι → ι) → ι . λ x9 : ι → ι . λ x10 . 0) (x6 0 (λ x8 : ι → ι . 0) 0 0) 0) (x4 (λ x8 : (ι → ι) → ι . λ x9 : ι → ι . λ x10 . 0) (setsum 0 0) (setsum 0 0))) (setsum 0 (x6 x7 (λ x8 : ι → ι . setsum 0 0) (setsum 0 0) (Inj1 0))))) ⟶ (∀ x4 . ∀ x5 : ι → ι → (ι → ι) → ι → ι . ∀ x6 x7 . x3 (λ x8 x9 . x8) 0 (Inj1 0) (setsum 0 0) ⟶ x1 (λ x8 . setsum (Inj0 x8) (setsum 0 (setsum 0 (setsum 0 0)))) (λ x8 : ((ι → ι) → ι) → ι . 0) 0) ⟶ (∀ x4 : ι → (ι → ι → ι) → (ι → ι) → ι → ι . ∀ x5 : ι → ι . ∀ x6 : ι → ι → (ι → ι) → ι → ι . ∀ x7 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι . x1 (λ x8 . x7 (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . setsum (Inj1 0) 0)) (λ x8 : ((ι → ι) → ι) → ι . Inj1 0) (x5 0) ⟶ x1 (λ x8 . setsum (x5 0) (Inj0 0)) (λ x8 : ((ι → ι) → ι) → ι . Inj0 0) (setsum (setsum 0 0) (Inj0 (setsum 0 (setsum 0 0))))) ⟶ (∀ x4 : ((ι → ι) → ι) → ι . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 : ((ι → ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . ∀ x7 : ι → ι . x0 (λ x8 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x9 : ι → ι → ι . x9 0 0) (Inj1 (setsum 0 (x6 (λ x8 : ι → ι → ι . λ x9 . Inj0 0) (λ x8 : ι → ι . λ x9 . x9))))) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι) → ι → ι . ∀ x6 : ι → ((ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x7 : ι → ((ι → ι) → ι → ι) → ι . In (Inj1 (setsum (x7 (x4 0) (λ x8 : ι → ι . λ x9 . setsum 0 0)) 0)) (Inj0 0) ⟶ x0 (λ x8 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x9 : ι → ι → ι . setsum 0 (x7 (x6 (setsum 0 0) (λ x10 : ι → ι . λ x11 . Inj1 0) (λ x10 . setsum 0 0)) (λ x10 : ι → ι . λ x11 . setsum (x10 0) 0))) (Inj1 (setsum (x4 (Inj1 0)) (Inj0 0))) ⟶ x3 (λ x8 x9 . setsum (setsum (x6 (setsum 0 0) (λ x10 : ι → ι . λ x11 . setsum 0 0) (λ x10 . x10)) (Inj1 0)) (Inj0 0)) 0 0 (x7 0 (λ x8 : ι → ι . λ x9 . x9))) ⟶ False) ⟶ ∀ x0 : ο . x0 |
|